Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYa, молекулы, линейные, симметричные движения

Типичным представителем ОКГ, работаюш,их на молекулярных переходах, является лазер на основе СО . Молекула СО линейно-симметрична в центре между двумя атомами кислорода располагается атом углерода (рис. 27). Число степеней свободы для нее равняется четырем, но двум степеням свободы соответствуют одни и те же частоты колебаний (вырождение) таким образом, возможны три вида колебательных движений симметричные, дважды вырожденные деформационные и антисимметричные.  [c.44]

В случае почти одинаковых частот v.2 и при первоначальном возбуждении одной из частот происходило бы в силу кориолисова взаимодействия и сильное возбуждение другой частоты. Однако это возбуждение будет очень слабым, если, как это имеет обычно место, частоты колебаний и V, зна- чительно разнятся между собой. Следствие кориолисова взаимодействия в любом случае будет то, что во вращающейся системе координат при возбуждении, например, колебания Уд атомы будут двигаться не по прямым, а по эллипсам, тем более вытянутым, чем меньше взаимодействие, т. е. чем меньше скорость вращения или чем больше отличаются друг от друга частоты колебаний у, и Уд. На фиг. 101 показано движение атомов для трех основных колебаний линейной симметричной молекулы типа ХУ . Так как для каждого рассматриваемого колебания каждый атом описывает эллипс с тем же направлением вращения, то, очевидно, возникает добавочный колебательный момент количества движения, что приводит к изменению энергии.  [c.403]


Молекулы с длинными цепями 217 Момент количества движения 75, 85,151,163 Момент количества движения, полный, / асимметричных волчков 55, 56, 57 линейных молекул 27 симметричных волчков 35, 38 Момент перехода 44, 274, 443, 451 Моменты инерции 25 асимметричных волчков 57, 517 влияние на колебательный изотопический эффект 251, 257 влияние на термодинамические функции 536, 540, 552 главные 25  [c.616]

J, квантовое число полного момента количества движения (и правила отбора дли него) асимметричных волчков 57, 69, 73, 497, 520 линейных молекул 26, 31, 32, 399, 409, 426 молекул со свободным внутренним вращением 529 симметричных волчков 51, 54, 481, 487 J, полный момент количества движения асимметричных волчков 57 линейных молекул 27 симметричных волчков 35, 38 сферических волчков 51 J, J" у), вращательные квантовые числа верхнего и нижнего состояний 31, 43  [c.635]

Более полезными будут графики, подобные представленным фиг. 166 и 167. Например, на фиг. 169, а потенциальная энергия НгО показана контурными линиями как функция расстояния И — Н (л ) и расстояния ядра О от линии Н —Н (г/) в предположении, что это ядро в любой момент времени расположено симметрично по отношению к обоим атомам Н. Возможность антисимметричного движения (колебания) не принимается во внимание точно так же, как это делалось при построении графика на фиг. 167 для линейной молекулы. Минимум, соответствующий равновесному положению, лежит теперь, конечно, над осью х, а не на ней, как в случае линейной молекулы. Два симметричных нормальных движения около положения равновесия опять представляются движениями фигуративной точки в направлениях максимума и минимума кривизны в потенциальной яме (аа и ЬЬ на фиг. 169, а).  [c.455]

Известно, что колебательная энергия атомов в молекуле также квантована. Структура колебательных уровней наиболее проста у двухатомных молекул типа N2, Oj и т. д. В этом случае имеется только один вид колебательного движения — симметричные колебания атомов вдоль оси молекулы. Уровни этих молекул расположены почти эквидистантно. Более сложным молекулам соответствует более сложная структура их колебательных уровней. Молекула, состояш,ая из N атомов, имеет г = 3N — 6 колебательных степеней свободы. Если же она линейна, то г = 3N — 5. Каждой степени свободы соответствуют колебательные уровни энергии с частотой нормальных колебаний v,.  [c.44]

Числовое значение 1п2 равно 1,38 кал/(моль-град), а экспериментально найденное значение несколько меньше (1,1 кал моль-град), что указывает на более высокую упорядоченность. Она может быть связана с действием слабых сил поляризации в молекулах СО при повышенных температурах, когда вращательное движение молекул еще не полностью выродилось. У молекул с таким же линейным строением 5С0 и НСЫ, которые на концах имеют неодинаковые атомы с очень разными массами, существует уже более сильная тенденция принимать совершенно определенную ориентацию. Действительно, у этих веществ экспериментально измеренная энтропия нулевой точки чрезвычайно мала. Кристаллы из симметрично построенных молекул, к примеру, Ог или Ыг, имеют при абсолютном нуле полное упорядочение, и поэтому не имеют конечной энтропии нулевой точки.  [c.121]


Указание. Каждой степени свободы колебательного движения отвечает своя частота <о и своя характеристическая температура в (см. задачу 4.13). Если молекула симметрична, то две или более частоты могут совпадать. Соответствующие им колебания называются вырожденными. В формулу для теплоемкости они входят с соответствующим множителем. Молекула двуокиси углерода линейна, поэтому имеет четыре степени свободы колебательного движения и, следовательно, четыре характеристических частоты колебаний. По данным спектроскопического анализа, эти частоты таковы (01 = = 1,355 см , (1)2=673 см- (2 частоты) и (Пз=2396 см . Две частоты (<й2) совпадают, иначе говоря частота 0)2 дважды вырождена.  [c.23]

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]

Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]

В электронных состояниях, не вырожденных орбитально, спин-орбитальная связь обычно очень мала точно так же, как в электронных состояниях Е линейных или двухатомных молекул (случай Ъ но Гунду), но с увеличением / и А" она возрастает. Введем теперь, как и для линейных молекул, квантовое число N полного момента количества движения, за исключением снина, которое заменит J во всех предыдущих формулах для симметричного волчка. Прибавляя к 3" спин получаем полный момент количества движения  [c.89]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

Симметричные линейные трехатомные молекулы. Потенциальная энергия линейной трехатомной молекулы зависит от четырех координат. Обычно для того, чтобы представить эту функцию, принимают две деформационные координаты равными нулю, т. е. рассматривают движение жестко фиксированным относительно оси симметрии (оси г). При таком упрощении потенциальная энергия зависит только от двух координат и поэтому может быть представлена двумерной поверхностью в обычном (трехмерном) пространстве.  [c.445]


Нелинейные симметричные трехатомные молекулы. Потенциальная функция нелинейной молекулы ХУа, построенная как функция двух расстояний ХУ, принимая угол неизменным, будет точно такого же типа, как проведенная на фиг. 163 для линейной молекулы. Однако такой график гораздо менее важен, поскольку в противоположность линейному случаю при соударении + Х угол ХУ, очевидно, не остается постоянным и в довершение всего даже вблизи минимума потенциальной энергии динамика движения не может быть представлена движением точечной массы по такой потенциальной поверхности.  [c.455]

Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

Например, для линейной симметричной молекулы типа ХУ (скажем, для молекулы Oj) при колебании (фиг. 25,(5) в течение одного полупериода поляризуемость больше, чем поляризуемость в положении равновесия, а в течение другого полупериода — меньше. Поэтому в первом приближении можно считать, что поляризуемость а является линейной функцией от нормальной координаты Ej, как показано на фиг. 75 (кривая I). Следовательно, колебание Vj является активным в комбинационном спектре. Однако при колебаниях и V3 для противоположных фаз движения поляризуемость, очевидно, одинакова, так что при изменении нормальных координат и Е3 она изменяется согласно кривым II и III нафиг. 75 с горизонтальной касательной при 2 = 0 или з = 0. Поэтому в первом приближении при малых амплитудах kj поляризуемость не изменяется колебания и Vj неактивны в комбинационном спектре. Ниже мы увидим, что это справедливо для основных частот даже при более высоком приблийсении. Аналогичным образом, согласно фиг. 65, для линейных симметричных молекул типа Х У, в комбинационном спектре активны только колебания Vj, Vj и а колебания Vj и Vj неактивны. Далее, для плоской молекулы типа XjY4 (см. фиг. 44) колебания Vj, v,, V3, Vj,, Vg и Vg являются актив-  [c.262]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]

Спиновое расщепление. Молекулы типа асимметричного волчка в отличие от молекул тина симметричного (или сферического) волчка и линейных не могут иметь электронного орбитального момента количества движения, и поэтому у них, как правило, небольшое расщепление уровней, обусловленное ненулевым электронным спином. Такое расщепление может быть неносред-ственпо вызвано только взаимодействием спина с очень слабым магнитным моментом, появляющимся нри вращении молекулы как целого. Однако существует также косвенное влияние связи спина 8 с орбитальным моментом L, даже несмотря на то, что последний в среднем равен нулю (т. е. даже несмотря на то, что равны нулю диагональные элементы момента X).  [c.116]

При практических вычислениях влияния кориолисова взаимодействия на уровни энергии необходимо, так же как и для линейных молекул, составить выражения для колебательных моментов количества движения р , pv н p для различных пар нормальных колебаний, взаимодействующих друг с другом (уравнение (4,10)]. например (vi, Vj) и (va, V3) в случае нелинейной молекулы ХУа, и затем подставить их в оператор Гамильтона общего вида (2,276) (см. Вильсон [935] и Ян [470]). Такие расчеты были выполнены Нильсеном [664] для трех колебаний, v, v -, и ve, молекулы Dj O (см. выше). В этом случае все формулы значительно упрощаются, так как молекула близка к симметричному волчку.  [c.497]

Р , Ру, Р , Р , Р-, Р , составляю Цие индуцироианного дипольного момента 263 Р , Ру. P . операторы полного момента количества движения 226. 403, 431 P , составляющая полного момента количества движения ikj оси волчка 36, 38 PQR, структура ветвей параллельных полос симметричных волчков 448 (], постоянная удвоения типа I 407, 419, 423 q , координаты смещения 86, 222 Q, ветвь в инфракрасных полосах асимметричных волчков 501, 507, 511, 514 линейных молекул 409, 414, 415, 417  [c.637]

Классификация электронных состояний, В уравнении Шредингера для движения электронов (1,5) величина Уе обозначает потенциальную энергию электронов в поле ядер (неподвижных). Как указано выше, в первом приближении (которое, как правило, является хорошим) мы можем рассматривать движение электронов при равновесном положении ядер. Поэтому функция Уе У 1меет ту же симметрию, что и молекул(а в определенном электронном состоя- ти. Таким образом, уравнение Шредингера, описывающее электронное ч движение, не изменяется под действием операции симметрии. Следовательно, 4 лектронная волновая функция невырожденного состояния может быть 4 олько симметричной или антисимметричной по отношению к каждой из оне-. Ч аций симметрии, допускаемых симметрией молекулы в равновесном ноло- ении, т. е. она либо остается неизменной, либо только меняет знак. В случае вырожденных состояний собственная функция может превращаться только в линейную комбинацию двух (или более) вырожденных волновых функций, так что квадрат волновой функции, представляющий собой электронную плотность, остается неизменным. Различные волновые функции могут вести себя по-разному по отношению к различным операциям симметрии данной точечной группы но, как правило, не все элементы симметрии точечной группы независимы друг от друга, поэтому возможны лишь определенные комбинации поведения волновых функций по отношению к операциям симметрии. Такие комбинации свойств симметрии называются типами симметрии (см. [23], стр. 118). На языке теории групп это неприводимые представления ])ассматриваемой точечной группы. Каждая электронная волновая функция, а следовательно, и каждое электронное состояние принадлежат к одному из возможных типов симметрии (представлений) точечной группы молекулы  [c.17]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]


Движения отдельных электронов в многоатомной молекуле, так же как в атомах и двухатомных молекулах, можно рассматривать в первом, очень грубом приближении как независимые. Другими словами, можно рассматривать движение каждого электрона отдельно в поле ядер и усредненном поле остальных электронов. В квантовой механике движение электрона с индексом i характеризуется волновой функцией о)) , которая существенно отлична от нуля только вблизи ядер и которая обращается в нуль на бесконечности. Следуя Малликену [888], такие одноэлектронные функции называют орбиталями ). Для атомов с одним электроном эти орбитали аналогичны волновым функциям атома водорода и водородонодобных ионов. Для атомов с несколькими электронами они являются несколько более сложными функциями, атомными орбиталями, причем их свойства симметрии те же, что и у волновых функций одноэлектронных атомов. В зависимости от значения квантового числа орбитального момента количества движения I = = О, 1, 2,. .. они обозначаются как s-, p-, d-,. .. орбитали. Для двухатомных молекул получаются молекулярные орбитали, которые в зависимости от значения Я, = О, 1, 2,. . . — компоненты орбитального момента вдоль межъядерной оси (см. [22], гл. VI, разд. 3) — обозначаются соответственно как 0-, Л-, 6-,. .. орбитали. Орбитали для линейной многоатомной молекулы будут совершенно такими же. Если есть центр симметрии (точечная группа l)ooh)i то орбитали могут быть только либо симметричными, либо антисимметричными относительно этого центра, т. е. будут орбитали oTg, о а, Vig, Лц,. ... Качественно форма этих орбиталей может быть иллюстрирована графически (см. [22], стр. 326, фиг. 155 русский перевод, стр. 237, фиг. 137).  [c.300]

Несимметричные линейные трехатомные молекулы. Если представить потенциальную поверхность линейной молекулы XYZ как функцию расстояний XY и YZ (Г] и Гг) в предположении, что молекула остается линейной, то симметричную картину, как на фиг. 163 для СО, (или в общем случае для XYj), уже нельзя будет больше нолучить. В этом случае необходимо использовать различные шкалы по двум (косоугольным) осям координат, если представлять движение в молекуле как движение точечной массы но потенциальной поверхности. Из ранее приведенных формул (IV,2) и (IV,3) получается, например, для H N г" = 78°15 ж с = 0,378. На фиг. 168 схематически нанесена потенциальная поверхность для основного состояния H N. Здесь также имеются две долины, но разной глубины и наклона, одна ведущая к Н( 5) -]- N( S+), а другая — к СН( 1] ) + N( S). На рисунке не показана пересекающая поверхность, приводящая к СН( П) -[- N( .S), которая дает только триплетные и квинтетные состояния, так н е как иоверхность, приводящая к СН( П) N( D), которая дает синглетные состояния, но для больших значений Гг лежит, по всей вероятности, выше ), чем СН( 2] ) + -j-N( [c.451]


Смотреть страницы где упоминается термин XYa, молекулы, линейные, симметричные движения : [c.619]    [c.637]    [c.466]    [c.31]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.88 , c.403 ]



ПОИСК



274, 323—327 симметричный

XYa, молекулы, линейные, симметричные

Движение симметричное

Линейные молекулы



© 2025 Mash-xxl.info Реклама на сайте