Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYa, молекулы, линейные, симметричные колебательный момент количества

В случае почти одинаковых частот v.2 и при первоначальном возбуждении одной из частот происходило бы в силу кориолисова взаимодействия и сильное возбуждение другой частоты. Однако это возбуждение будет очень слабым, если, как это имеет обычно место, частоты колебаний и V, зна- чительно разнятся между собой. Следствие кориолисова взаимодействия в любом случае будет то, что во вращающейся системе координат при возбуждении, например, колебания Уд атомы будут двигаться не по прямым, а по эллипсам, тем более вытянутым, чем меньше взаимодействие, т. е. чем меньше скорость вращения или чем больше отличаются друг от друга частоты колебаний у, и Уд. На фиг. 101 показано движение атомов для трех основных колебаний линейной симметричной молекулы типа ХУ . Так как для каждого рассматриваемого колебания каждый атом описывает эллипс с тем же направлением вращения, то, очевидно, возникает добавочный колебательный момент количества движения, что приводит к изменению энергии.  [c.403]


Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]

Молекулы с длинными цепями 217 Момент количества движения 75, 85,151,163 Момент количества движения, полный, / асимметричных волчков 55, 56, 57 линейных молекул 27 симметричных волчков 35, 38 Момент перехода 44, 274, 443, 451 Моменты инерции 25 асимметричных волчков 57, 517 влияние на колебательный изотопический эффект 251, 257 влияние на термодинамические функции 536, 540, 552 главные 25  [c.616]

При практических вычислениях влияния кориолисова взаимодействия на уровни энергии необходимо, так же как и для линейных молекул, составить выражения для колебательных моментов количества движения р , pv н p для различных пар нормальных колебаний, взаимодействующих друг с другом (уравнение (4,10)]. например (vi, Vj) и (va, V3) в случае нелинейной молекулы ХУа, и затем подставить их в оператор Гамильтона общего вида (2,276) (см. Вильсон [935] и Ян [470]). Такие расчеты были выполнены Нильсеном [664] для трех колебаний, v, v -, и ve, молекулы Dj O (см. выше). В этом случае все формулы значительно упрощаются, так как молекула близка к симметричному волчку.  [c.497]

Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]


Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



274, 323—327 симметричный

XYa, молекулы, линейные, симметричные

Колебательные

Линейные молекулы

Линейный момент

Симметричные молекулы, колебательная



© 2025 Mash-xxl.info Реклама на сайте