Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

C—D колебание колебание v2, неактивное в инфракрасном спектре

Аналогичный результат справедлив для всех колебаний (вырожденных и невырожденных), являющихся антисимметричными по отношению к центру симметрии, например, для всех инфракрасных активных колебаний плоской молекулы типа Х,У4, линейной молекулы типа и др., что сразу же следует из правила о четных и нечетных состояниях (состояниях g и и, см. стр. 140), применяемого в сочетании с табл. 55. Этот результат справедлив также для невырожденных инфракрасных активных колебаний некоторых точечных групп, имеющих центр симметрии, именно таких, для которых полносимметричные колебания неактивны в инфракрасном спектре, как, например, для колебания . (а /) плоской молекулы типа ХУз (см. фиг. 63). Следует, однако, подчеркнуть, что обратное чередование не имеет места для серии обертонов, соответствующих основным колебаниям, активным в комбинационном спектре. Например, в случае молекул, имеющих центр симметрии, все обертоны актив-,ных комбинационных основных частот активны в комбинационном спектре и неактивны в инфракрасном спектре.  [c.285]


Нормальные колебания, связанные с изменением дипольного момента и поэтому проявляющиеся в инфракрасном спектре, называются инфракрасными активными колебаниями. Колебания, при которых перераспределение зарядов (всегда происходящее) не приводит к изменению дипольного момента и которые поэтому не проявляются в инфракрасном спектре, называются инфракрасными неактивными колебаниями. В гармоническом приближении активными являются только основные частоты v,. обертоны 2v,-, 3v , .. и составные частоты и т. д. являются неактивными, так как колебательное движение  [c.259]

Однако не всякая симметричная молекула обладает неактивными колебаниями. Например, в нелинейной симметричной молекуле типа ХУ (скажем, в молекуле Н,0) все три нормальных колебания (см. фиг. 25, а) связаны с изменением дипольного момента, т. е. они являются активными в инфракрасном спектре. С другой стороны, молекула такого типа, как Х УЕ , принадлежащая к той же точечной группе имеет одно неактивное колебание, а именно, крутильное колебание атомов Х относительно атомов 2 . В этом случае дипольный момент в положении равновесия отличен от нуля, но при малых амплитудах крутильных колебаний дипольный момент не меняется ни по направлению, ни по величине, в противоположность тому, что происходит при всех других колебаниях.  [c.260]

НЫМИ В комбинационном спектре, все другие колебания — неактивными. В этих трех примерах, следовательно, ни одно из колебаний, активных в инфракрасном спектре (см. стр. 260), не является активным в комбинационном спектре. Однако, согласно сформулированному выше правилу, как видно из фиг. 25, а, все три колебания нелинейной симметричной (а тем более несимметричной) молекулы типа ХУа активны как в комбинационном, так и в инфракрасном спектрах.  [c.263]

Из всего вышеизложенного непосредственно вытекает интерпретация трех основных частот VI, Чз и V, (фиг. 41) ). Подобные соображения позволяют интерпретировать эти частоты также и в молекуле СВ,. В табл. 80 приведены основные частоты обеих молекул. Четвертую частоту Уг нельзя идентифицировать с частотой третьей слабой комбинационной линии (3071,5 см- в СН,, 2108,1 см- в СО,) во-первых, она не может быть выше частот валентных колебаний С—Н (С—D)v иvз, что непосредственно следует из формы соответствующего колебания (см. фиг. 41), и, во-вторых, потому, что в инфракрасном спектре СН, наблюдаются составные частоты, представляющие комбинацию основных активных частот с частотой неактивного колебания 1520 см- . Таким образом, для молекулы СН, мы получаем значение частоты Чз 2= 1520 см-1. Комбинационную линию  [c.331]

Определяющие ядра совокупности 149, 251 Оптические изомеры 38, 239, 243, 373 Ортогональное преобразование 107, 113, 118 Ортогональность нормальных колебаний и собственных функций 83, 108, 282 Основные комбинационные частоты 262, 235, 269, 279, 283 (глава III, 2г) интенсивность 275, 283 степень деполяризации 268, 291 Основные частоты, активные и неактивные в инфракрасных спектрах 259, 269, 279 Основные частоты (см. также отдельные молекулы и молекулы типа XY. и т. д.) 81, 90, 159, 163, 176 в испускании или поглощении 259 нумерация 182, 293  [c.618]


Активные и неактивные основные колебания. Согласно классической электродинамике любое движение системы атомов, связанное с изменением дипольного момента, приводит к испусканию или поглощению излучения ). Во время колебательного движения молекулы распределение электрических зарядов претерпевает периодические изменения, а поэтому, вообще говоря, периодически меняется (хотя и не всегда) дипольный момент. Так как любое колебательное движение можно представить приближенно, считая его гармоническим, в виде суммы нормальных колебаний с надлежащими амплитудами и так как нормальные колебания являются единственными простыми периодическими движениями, то частоты нормальных колебаний и представляют собой те частоты, которые испускаются или поглощаются молекулой. Как и в двухатомных молекулах, эти частоты лежат в близкой инфракрасной области. В инфракрасной области они обычно наблюдаются в спектре поглощения.  [c.259]

Если бы ядра молекулы О, образовывали равносторонний треугольник (точечная i pynna D h), то имелось бы только два нормальных колебания одно полностью симметричное, а другое-—дважды вырожденное (см. фиг. 32,о). Лишь последнее было бы активно в инфракрасном спектре (см. табл. 55), Из данных, приведенных в табл. 66, легко видеть, что наблюденный спектр совершенно невозможно интерпретировать на основе только двух основных частот — одной активной и одной неактивной. Таким образом, равносторонняя модель заведомо исключается.  [c.310]

Трехфтористый бор, ВРз. Две наиболее вероятные модели молекулы ВРз —форма пирамиды и плоская симметричная форма (точечные группы С, и />зй соответственно). В обоих случаях имелось бы по четыре основных частоты в первом — типов симметрии 2А1- -2Е, во втором — типов симметрии А - - А - -2Е (см. табл. 36). Согласно табл. 55, в первом случае все четыре должны быть активны как в инфракрасном спектре, так и в комбинационном спектре. Во втором случае полносимметричное колебание типа А[ (и только оно) должно быть неактивно в инфракрасном спектре, а антисимметричное колебание типа ЛУ — в комбинационном спектре. Экспериментально обнаружены три основные частоты, активные в инфракрасной области (Гейдж и Баркер 344]), и две интенсивные комбинационные частоты (Иост, Девольт, Андерсен и Лассетр [970]), причем значение одной из них совпадает с значением одной из инфракрасных частот. Этот результат соответствует лучше всего плоской модели, хотя можно было бы считать, что четвертая основная частота, проявляющаяся в комбинационном спектре в виде наиболее интенсивной линии, в инфракрасном спектре лишь слаба и не измерена в этом последнем случае могла бы быть правильной и пирамидальная модель.  [c.322]

Форма и обозначения основных колебаний октаэдрической молекулы XYe были даны ранее на фиг. 51. Так как полносимметричным колебаниям обычно соответствуют наиболее интенсивные комбинационные линии, то представляется несомненным, что очень интенсивная комбинационная линия 755 см соответствует vi(aig ). Две слабые комбинационные линии, 644 и 524 см , соответствуют основным частотам ч (eg) и (f g) (из фиг. 51 следует, что > N5, причем является деформационной частотой). Две интенсивные инфракрасные полосы, 965 и 617 см"", соответствуют основным частотам va(/ij и V4 (/щ). Остальные слабые инфракрасные полосы могут быть интерпретированы, как указано в табл. 99, согласно Эйкену и Аренсу [310] (с небольшими изменениями). Существенно отметить, что в полном соответствии с правилами отбора (см. стр. 284) в инфракрасном спектре отсутствуют первые обертоны инфракрасных основных частот 2vs и 2vj. Интерпретация четырех слабых инфракрасных полос, 545, 730, 830 и 1205 см , как разностных полос неудовлетворительна ввиду отсутствия соответствующих суммарных составных полос. Частота неактивного колебания получена из измерений теплоемкости (см. Эйкен и Аренс [310]). Ее величина не особенно достоверна и подтверждается только слабыми составными полосами. Было бы желательным провести дальнейшее исследование инфракрасного спектра, особенно в более длинноволновой и более коротковолновой областях (по сравнению с областью, исследованной Эйкеном и Аренсом), и применить более высокую дисперсию.  [c.362]

Крутильные колебания симметричных молекул типа СоНб или С Н, неактивны в инфракрасном спектре. Очевидно, что это будет справедливо также и для свободного внутреннего вращения, т. е. для предельного случая полного отсутствия потенциального барьера, так как при таком движении не будет происходить никакого изменения дипольного. момента, Другими словами, не будет наблюдаться чисто вращательный спектр, соответствующий свободному внутреннему вращению. То же мы имели и этих молекул.  [c.527]

С—D, расстояние и D4 486 С—D колебание 264,315—316, 324,331,395 тяжелый метан изотопический эффект 254, 331 колебание Vj. неактивное в инфракрасном спектре 331 междуатомное расстояние,момент инерции и вращательная постоянная 486 наблюденные комбинационные н инфракрасные спектры 330 нулевые частоты 331 основные частоты 330,331 резонанс Ферми 331 сь ловые постоянные 186, 200 тепловое распределение вращательных уровней 53 2D2 тяжелый ацетилен изотопический эффект 316 наблюденные инфракрасные и комбинационные спектры 311, 316 основные частоты 316 силовые постоянные 199, 206 статистические веса вращательных уровней, чередование интенсивности 28, 30, 411  [c.605]


Напомним, что в 5, в рассмотрено влияние макроскопического электрического поля на расщепление вырожденных оптических колебаний в кубических кристаллах с центром инверсии этот длинноволновый (для конечных волновых векторов) эффект вызывает также изменения в спектрах инфракрасного поглощения и комбинационного рассеяния. Проведенное в 5, в рассмотрение полностью применимо к кристаллам типа каменной соли. Поперечное оптическое (ТО) колебание (компонента расщепленного оптического колебания) активно в инфракрасном поглощении [см. (5.56)], тогда как продольное оптическое (L0) колебание неактивно. В комбинационном рассеянии оба колебания запрещены. Хотя мы не будем обсуждать в явном виде эти свойства, связанные с макроскопическим полем, и соответствующий анализ спектров, результаты, приводимые в 22—26, на самом деле получены с учетом эффектов макроскопического поля при определении энергетического расщепления TO — LO в фононном спектре. Наиболее яркие эффекты, например аномальная угловая зависимость комбинационного рассеяния, обсуждавщаяся в 5 [формулы (5.57) — (5.67)], появляются только в кубических кристаллах без центра инверсии (например, со структурой цинковой обманки) и не имеют места в рещетках каменной соли и алмаза. Однако эффекты нарущения симметрии, подобные рассмотренным в 6, ж могут приводить при наличии резонанса к весьма существенному изменению правил отбора и к анизотропному рассеянию даже в кристаллах кубической симметрии Он-  [c.149]


Смотреть страницы где упоминается термин C—D колебание колебание v2, неактивное в инфракрасном спектре : [c.287]    [c.281]    [c.260]    [c.284]    [c.286]    [c.395]    [c.607]    [c.623]    [c.689]    [c.77]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.331 ]



ПОИСК



Инфракрасные спектры

Колебания неактивные

Колебания спектр

По инфракрасная



© 2025 Mash-xxl.info Реклама на сайте