Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

33 — Уравнения основные упругие 58, 61, 92, 104 — Закон

Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]


Формально изменение температуры тела Т вносит лишь изменение в запись закона Гука из числа основных уравнений теории упругости. Так, для плоского напряженного состояния он получит вид  [c.124]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Во многих задачах, особенно если на границе тела заданы перемещения, удобно в качестве основных уравнений брать уравнения теории упругости в перемещениях — уравнения Ламе (см. гл. IV т. 1). Уравнения Ламе получаются, как известно, из общих уравнений количества движения с использованием закона Гука и формул (1.1), выражающих компоненты тензора деформаций через перемещения (при условии, что относительные смещения малы, а входящие в закон Гука, могут быть выражены через перемещения).  [c.342]

Таким образом, напряжения (5.1) удовлетворяют основным уравнениям теории упругости. Следовательно, их существование возможно и они соответствуют чистому изгибу. При этом пары сил на торцах должны быть распределены по тому же закону, что и напряжения о . Если же приложение этих пар будет иным, то и распределение напряжений а, не будет следовать закону (5.1). Оно окажется более сложным  [c.50]

Решение этой системы можно искать либо в перемещениях , либо в напряжениях . В первом случае за основные неизвестные функции принимают перемещения и, х, у, г), tiy х, у, г), (х, у, г), а систему уравнений теории упругости сводят к трем уравнениям относительно этих функций. Для этого напряжения в дифференциальных уравнениях равновесия (1.1) выражают по закону Гука (1.14) через деформации, а последние по формулам Коши (1.7) — через перемещения. В результате получают уравнения Ляме  [c.19]

На практике в технике основная часть явлений не может быть объяснена с помощью классических моделей. Возникают новые конструкционные материалы, свойства которых не могут быть описаны с помощью лишь уравнений линейной упругости и даже нелинейной. Многие случаи непредвиденного разрушения не укладываются в рамки классических теорий. Экспериментальные данные в основном скудны. Что до физических теорий, они позволяют механику удовлетворить свое любопытство, но малопригодны для построения уравнений состояния. Эти законы и теории в основном базируются все же на феноменологических концепциях.  [c.68]

Обобщенным законом Гука мы закончили вывод всех основных групп уравнений теории упругости дадим их еще раз в общей сводке и для удобства ссылок в дальнейшем снабдим их особой нумерацией (римскими цифрами).  [c.89]


Основные уравнения теории упругости для общего случая (см. гл. 3) соответствующим образом упрощаются для плоской задачи, причем различие между плоским деформированным состоянием и плоским напряженным состоянием становится заметным только в физическом законе >.  [c.191]

Основные соотношения. Расчет упрочняющихся пластин по теории пластического течения требует большой вычислительной работы. Поэтому, как правило, используют уравнения теории упруго-пласти-ческих деформаций. Для упрощения задачи принимают условие несжимаемости. Уравнения изгиба пластин при общей зависимости между интенсивностями напряжений и деформаций приведены в работе [4]. Эти зависимости существенно упрощаются для случая степенного закона  [c.621]

Реальный процесс деформирования, связанный с необратимым процессом теплопроводности, в общем случае также является необратимым. Поэтому для решения задач термоупругости помимо механических законов сохранения и определяющих уравнений теории упругости, дополненных температурными членами, необходимо привлекать основные положения термодинамики необратимых процессов [23].  [c.121]

Многие системы механики сплошной среды, такие как уравнения газовой динамики, уравнения магнитной гидродинамики, уравнения теории упругости, уравнения Максвелла принадлежат к описанному типу систем уравнений, выражающих законы сохранения, и мы в дальнейшем будем рассматривать в качестве основного случая именно такие системы.  [c.17]

Первое, что обращает на себя внимание, — это несоответствие между скоростями распространения возмущений, определяемыми уравнениями теории упругости и уравнением (35.1). Как следует из теории упругости, продольные волны распространяются со скоростью + 2 1)/р > с о = К /р. Таким образом, максимальную скорость распространения возмущений уравнение (35.1) определяет неверно. С другой стороны, ясно, что если стержень находится в условиях одноосного напряженного состояния, то скорость распространения возмущений в нем должна быть равна Действительно, скорость плоской волны в упругой системе равна корню квадратному из отношения жесткости к плотности. Это следует из основного закона механики. Пусть, например,  [c.216]

Введенные выше векторы и матрицы, а также установленные связи между ними позволяют записать полную систему разрешающих уравнений для основной задачи расчета стержневых систем. Эти уравнения можно разделить на три группы. Первую группу составляют уравнения равновесия узлов и элементов под действием узловых усилий. Вторая группа является уравнениями неразрывности перемещений в узлах. Третья группа уравнений представляет собой закон упругости, связывающий между собой узловые перемещения и усилия. Такое подразделение разрешающих уравнений характерно для любого раздела механики твердого деформируемого тела. Как и сами уравнения, оно связано с механическими, геометрическими и физическими принципами, которые лежат в основе рассматриваемых задач.  [c.59]

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]

Формула Эйлера. Программами вывод формулы Эйлера не предусмотрен. Все же считаем необходимым указать, что вывод базируется на интегрировании дифференциального уравнения упругой линии, а значит, и на использовании основного уравнения изгиба (зависимости между кривизной и изгибающим моментом), которое получено на основе закона Гука. Это указание даст возможность в дальнейшем не рецептурно, а физически обоснованно установить обл асть применимости формулы Эйлера.  [c.192]

Во второй главе дается довольно компактное изложение основных положений теории упругости (вектор смещений, тензор напряжений и тензор деформаций, закон Гука, уравнения равновесия и совместности деформаций).  [c.7]

Постановка граничных условий для уравнений Ламе особенно проста, когда речь идет о первой основной задаче теории упругости, т. е. когда на поверхности задано и, = Ui. Если на границе заданы усилия, то следует по закону Гука выразить напряжения через деформации, т. е. первые производные от перемещений, и внести в граничные условия (8.4.6). Таким образом, на границе оказываются заданными некоторые линейные комбинации из первых производных функций ш, которые мы выписывать не будем.  [c.249]

В первом разделе работы Умов вводит основные понятия, включая понятие потока энергии, и получает на их основе математическое выражение закона сохранения энергии в дифференциальной и интегральной формах. Во втором и третьем разделах он исследует законы движения энергии в конкретных случаях в упругих телах, Б жидких средах и при переносе энергия между взаимодействующими телами, пространственно отделенными друг 01 друга. В каждом случае он получает математические выражения компонент вектора плотности энергии— уравнения движения энергии.  [c.153]


ХЫХ. р]. Следствие I. Три уравнения (р) содержат основные законы движения упругих жидкостей. Чтобы применить эти уравнения, предположим, как в п. ХСП, что  [c.155]

Обратим внимание и на то, что при составлении условия подобия при изгибе брусьев не были рассмотрены условия предельных состояний. Речь шла только о моделировании упругих состояний. Для описания такого свойства материалов, как упругость, достаточно использовать закон Гука. В случае перехода в упруго-пластическую область либо к условиям разрушения уравнения, описывающие эти состояния, должны быть основными для изучения условий подобия.  [c.30]

Это линейное однородное уравнение четвертого порядка является основным уравнением теории устойчивости прямых упругих стержней. Оно применимо при любых законах изменения жесткости EJ (х), при любых нагрузках и условиях закрепления, охватываемых сформулированными выше допущениями.  [c.80]

Основные вычислительные сложности при построении решения системы дифференциальных уравнений движения вынужденных колебаний (6.35) обусловлены определением полюсов подынтегральной функции еР N (р) F (р) и нахождением вычетов этой функции по соответствующим полюсам. Отыскание указанных выше полюсов связано с необходимостью решать алгебраические уравнения обычно высоких порядков, что осуществимо только численными методами. Отметим, что в ряде практически важных случаев не столько необходимо знать закон движения какого-либо из звеньев привода, сколько экстремальные значения динамических характеристик (момента двигателя, момента сил упругости в рассматриваемом соединении, скоростей звеньев). Следовательно, актуальной является проблема разработки эффективных приближенных методов, позволяющих с требуемой точностью оценить решение системы дифференциальных уравнений движения.  [c.191]

Сравнивая приведенный вывод и полученные уравнения с выводом уравнений продольных колебаний (5.01, 5.49 а,Ь, с), можно увидеть полную аналогию в основных уравнениях обеих задач. Можно также увидеть, что друг другу соответствуют момент и сила, осевое перемещение и угол поворота, площадь сечения п момент инерции сечения, масса и массовый момент инерции, модуль упругости на растяжение или сжатие и модуль сдвига. Заменяя соответствующие величины, можно результаты, полученные при расчете продольных колебаний, распространить на крутильные колебания и наоборот. Уравнение (6.01 d) легко решается, если Ji x) меняется по закону. Из формулы (5.02Ь) можно сделать  [c.258]

Как было отмечено, отличия в двух теориях пластичности заключаются в физических законах. Что касается двух других групп основных соотношений механики — уравнений равновесия и соотношений Коши, то они справедливы в обеих теориях пластичности и имеют тот же вид, что и в теории упругости (гл. 4 и 5).  [c.502]

Основным объектом исследования в механике деформирования является конструкция, т. е. неоднородно деформируемое тело. Исследование поведения материала (в условиях однородной по объему деформации) является необходимым этапом ему были посвящены первые главы данной книги. Задача расчета конструкции состоит в определении ее реакции (возникающих напряжений, деформаций и смещений) на заданные внешние воздействия — объемные и поверхностные силы Fqu F i, краевые смещения и, распределенные по объему деформации, в частности,тепловые. Для идеально упругого тела решение в принципе является простым, поскольку история изменения внешних воздействий несущественна и каждому значению определяющих их параметров однозначно соответствует некоторое состояние конструкции. Последнее может быть определено с помощью системы уравнений, включающих условия равновесия, совместности и закон Гука  [c.143]

Рассмотрим теперь соотношение между основными величинами. Принцип равновесия достаточно понятен, и в настоящее время ни он, ни геометриче ,ские соотношения между деформациями и перемещениями не нуждаются в обсуждении. Здесь, однако, удобно обсудить тот-факт, что для случая упругого тела, т. е. для тела, чей материал можно считать подчиняющимся закону Гука, а напряжения не превышают предела упругости, уравнения равновесия можно заменить целиком либо частично рассмотрением энергии упругой деформации, т. е. потенциальной энергии, накопленной при упругом,деформировании тела (например, энергия, накопленная при заводе часовой пружины), которую можно подсчитать как сумму работ, совершаемых при деформировании каждой части тела.  [c.23]

В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]

Монотонное нагружение обычно реализуется при простом нагружении, когда все внешние силовые факторы изменяются пропорционально одному возрастающему параметру. При простом нагружении соотношение между внешними нагрузками в процессе нагружения остается неизменным. Если наступает процесс разгрузки, когда во всех точках тела иитеисивность напряжений убывает (например, при снятии В1гешних усилий), то приращение (уменьшение) напряжений и деформаций ка этапе разгрузки определяется на основе уравнений упругости (закон разгрузки см. рис. 5.15). Основные ограничения рассматриваемой модели пластичности связаны с тем, что уравнения пластич-  [c.129]

В главах 4—6 были выведены основные уравнения теории упругости, устанавливающие законы изменения напряжений и деформаций в деформируемом твердом теле, а также соотношения, связывающие напряжения с деформациями и де-формащ1и с перемещениями. Приведем полную систему уравнений теории упругости в декартовых координатах.  [c.329]

Поскольку 8 не является параметром состояния тела, то уравнение (22) не пригодно для решения. Таким параметром может служить Упругая деформация е. Если в теле нет разрывов, то полная деформация 8 + е " удовлетворяет условию совместности. Учитывая это и уравениё ( 22), получим основной геометрический закон для поля т)  [c.107]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]


Пластинка, толщина которой б мала по сравнению с остальными размерами, подвергается действию приложенных по контуру сил, лежащих в срединной плоскости пластинки. Положим, что нам известен закон распределения напряжений. Задача заключается в том, чтобы найти, как изменятся напряжения, если в какой-либо точке пластинки, удаленной от контура, сделать круглое отверстие малого диаметра. Частный случай поставленной задачи решен Г. Киршем ), им разобран случай растяжения пластинки. Свое решение Г. Кирш получил путем подбора. Процесса этого подбора решения он не приводит, а дает окончательные значения перемещений и деформаций и показывает, что они удовлетворяют основным уравнениям теории упругости. Недавно вышла по этому же вопросу новая работа П. А. Велихова ). Хотя автор в начале своей работы и указывает, что ему при отыскании решения много помогла гидродинамическая аналогия, но в действительности опять все сведено к постепенному подбору решения. В заключение этой работы автор приходит к результатам Г. Кирша. Ниже мы подробно остановимся на работе П. А. Велихова, здесь же предлагаем решение задачи прямым путем, а не путем подбора. Такое решение вполне возможно, если рассматривать задачу как плоскую и воспользоваться общим решением ее в случае кругового кольца ).  [c.106]

Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]

В. М. Александровым, Ю. Н. Пошовкиным [24] и Н. В. Генераловой, Е. В. Коваленко [32] решены соответственно плоская и пространственная контактные задачи о вдавливании без трения полосового в плане штампа в поверхность линейно-деформируемого основания, армированную тонким упругим покрытием переменной толщины, жесткость которого соизмерима или меньше жесткости основного упругого тела. Обе задачи сведены к исследованию интегрального уравнения Фредгольма второго рода с коэффициентом при старшем члене, являющимся достаточно произвольной функцией поперечной координаты. Для его решения в первом случае использовался метод сплайн-функций в сочетании с методом ортогональных многочленов, когда толщина покрытия постоянна. Во втором варианте применялся проекционный метод Бубнова-Г алеркина с выбором в качестве координатных элементов систем ортогональных полиномов или дельтаобразных функций (вариационно-разностный метод), а также алгоритм сращиваемых асимптотических разложений, когда упомянутый выше коэффициент мал. Доказано, что неравномерность толщины покрытия существенно влияет на закон распределения контактных давлений.  [c.463]

Однако при проектировании современных машин часто приходится pa мafpивaть деформацию деталей за пределами упругости. В этом случае законы и уравнения теории упругости не могут быть применены, так как принятые ранее допущения об упругости материала не выполняются. Такие задачи решаются методами теории пластичности. Решение многих задач методами математической теории пластичности из-за сложностей чисто математического характера практически получить невозможно. Поэтому, наряду с развитием математической теории пластичности, занимающейся изысканием методов точного решения задач механики твердого тела, деформируемого за пределами упругости, разрабатываются упрощенные методы. Такие методы решения задач с помощью введения дополнительных гипотез и допущений излагаются в прикладной теории пластичности. Основные законы и уравнения математической и прикладной теории пластичности изложены в трудах Н. И. Безухова, А. А. Ильюшина, С. Г. Михлина, А. Надаи, Г. А. Смирнова-Аляева, В. В. Соколовского, Р. Хилла, В. Прагера, Н. Н. Малинина, Д. Д. Ивлева, Л. С. Лейбензона и др.  [c.11]

Проделанный выше переход от среднего напряжения по площадке к напряжению в точке связан с воображаемым процессом уменьшения размеров площадки ДР до нуля, необходимым для п )и-менения анализа бесконечно малых. Законность и обоснованность такого формального процесса, как уже указывалось выше, долгое время были под сомнением и являлись предметом дискуссий среди ученых однако приложение полученных основных уравнений теории упругости к решению задач физики довольно быстро показало эффективность разработанных Методов и дало ряд замечательных результатов, подтвержденных опытом это относится прежде всего к области изучения колебаний и распространения волн (например, звуковых) в упругих телах некоторые более простые задачи этого рода освещены в главах IV и IX настоящей книги. Середина XIX века была особенно богата достижениями в смысле развития теории упругости и получения решений задач, важных для физики и техники здесь главную роль сыгралк работы крупнейшего французского исследователя Сен-Венана и его учеников. В этих условиях постепенно исчезли сомнения в физической обоснованности метода теории упругости, оперирующего как бы с непрерывной, сплошной средой с этой точки зрения иногда говорят, что теория упругости основывается на гипотезе сплошного строения твердых тел. При этом, конечно, нельзя забывать, что такая гипотеза является только рабочей гипотезой-, она диктуется принятым математическим методом исследования и не вторгается в те области физики, которые непосредственно занимаются вопросами строения тел.  [c.12]

Если анизотропное тело обладает симметрией упругих свойств (упругой симметрией), то уравнения обобш,енного закона Гука для него упрош аются, так как некоторые из коэффициентов оказываются равными нулю, тогда как между другими появляются линейные зависимости. Эти упрош,ения можно вывести, применяя следуюш,ий метод. Отнесем тело к системе координат х, у, 2, а затем ко второй — х у, г, симметричной с первой, в соответствии с тем видом симметрии, какая наблюдается в теле. Направления осей х.у ъ и х у 2 одинакового наименования будут направлениями, эквивалентными в отношении упругих свойств, а поэтому уравнения обобщенного закона Гука для симметричных систем координат запишутся одинаково. Записав эти уравнения в системе д , у, 2 и в системе х у 2, далее переходим к одной из них, выражая, скажем, х, у, через х, у, ъ. Сравнивая получившиеся одноименные уравнения, мы находим зависимости между или Л Вместо уравнений обобщенного закона Гука можно взять выражение упругого потенциала, записанное в основной системе х, у, z и симметричной х у, z Переходя во втором выражении к системе х, у, zш приравнивая упругие потенциалы, приходим к тем же результатам.  [c.31]

Постановка краевых задач теории упругости. Пусть упругое тело занимает трехмерную область V, а 5 представляет собой его поверхность. В каждой точке тела V должны выполняться основные уравнения теории упругости соотношение Коши, уравнение движения (уравнение равновесия для задач статики) и уравнение закона Гука ( в случае техмоупругости вместо закона Гука следует брать его обобщение, данное Дюамелем и Нейманом, и модифицированное уравнение теплопроводности (29.14)). Что же касается краевых условий,то основными являются три класса  [c.112]

Гидромеханика (гидравлика) как наука сформировалась в XVIII веке в Российской академии наук работами Д. Бернулли (1700—1782), Л. Эйлера (1707—1783) и М. В. Ломоносова (1711 — 1765). М. В. Ломоносов открыл закон сохранения вещества в движении, который является физической основой уравнений движения жидкости. В своих работах О вольном движении воздуха, в рудниках примеченном , Попытка теории упругой силы воздуха , а также разработкой и изготовлением приборов для измерения скорости и направления ветра М. В. Ломоносов заложил основы гидравлики как прикладной науки. Л. Эйлер составил известные дифференциальные уравнения относительного равновесия и движения жидкости (уравнения Эйлера), а также предложил способы описания движения жидкости. Д. Бернулли получил уравнение запаса удельной энергии в невязкой жидкости при установившемся движении (уравнение Бернулли), являющееся основным в гидравлике.  [c.4]


Основное уравнение задачи (7,320), разумеется, упрощается для ортотропного бруса. В этом случае в рмуле закона Гука (7.304) модули упругости представляются матрицей (3.38) с числом независимых упругих постоянных, равным девяти. Упругие постоянные tjt, и Аkiij (в случае ортотропного тела), у которых среди индексов встречаются один или три раза индекс 1 , 2 или 3 , равны нулю. Поэтому при кручении ортотропного бруса коэффициент податливости Л assi = О и равенства (7.311) упрощаются -  [c.201]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

Покажем, что при этом строго выполняются все основные соотношения теории упругости. Очевидно, что, если a = onst, а x,j = 0, то уравнения равновесия (16.1) обращаются в тождества. Из закона Гука (16.3) получим, что также постоянны по объему тела, а у,у = 0. Отсюда следует, что условия совместности деформаций Сен-Венана (16.4) и (16.5) также выполняются. Рассмотрим граничные условия в напряжениях (16.7). Проектируя нагрузку р в любой точке поверхности на оси координат (рис. 16.10), получим  [c.341]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Линейно-упругая среда Гука. Сопротивление металла деформации определяется в основном тремя его свойствами — упругостью, пластичностью и вязкостью. В связи с этим вводятся три простые реологические модели, изображающие эти свойства. Первая модель — линейно-упругая среда Гука (рис. 67) изображает свойство упругости. В соответствии с законом Гука приращение длины образца при растяжении в области упругой деформации равно dl = IdPlFE, откуда dl/l = da JE. Интегрируя в пределах от (когда а = 0) до I, получим уравнение состояния линейно-упругой среды при линейном напряженном состоянии  [c.171]

Рассмотрим применение метода статистических испытаний при исследовании случайных колебаний многомассовой системы (рис. 3.9) при движении по дороге со случайными неровностями (проведено А. И. Котовым и Ю. Ю. Олешко). Одним из возможных путей снижения ускорений и ударов, действующих на транспортируемые грузы, является вторичная амортизация, т. е. введение в систему груз — транспортное средство дополнительных упругих элементов и демпферов (амортизационных узлов). Основным внешним воздействием для наземных транспортных средств является кинематическое возмущение со стороны дороги, имеющее случайный характер (высота Н и длина волны дорожных неровностей X — случайные функции). В случае неустановившегося движения для решения задачи о выборе параметров вторичной амортизации нельзя использовать спектральную теорию под-рессоривания, так как требуется определить вероятность пробоя системы амортизации, что можно сделать только, зная законы распределения перемещений. Получить законы распределения выходных величин можно решением соответствующего данной многомерной задаче уравнения Колмогорова, что сделать для системы со многими степенями свободы очень сложно. Кроме того, при решении уравнения Колмогорова получается многомерный закон распределения вектора состояния системы, который менее удобен при решении ряда задач (определение вероятности достижения заданной границы и т. д.), чем одномерные законы распределения компонент вектора состояния, получаемые методом статистических испытаний.  [c.101]


Смотреть страницы где упоминается термин 33 — Уравнения основные упругие 58, 61, 92, 104 — Закон : [c.119]    [c.549]    [c.10]    [c.7]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]



ПОИСК



Закон Уравнение

Закон упругости

ОСНОВНОЙ ЗАКОН ТЕОРИИ УПРУГОСТИ ОСНОВНЫЕ УРАВНЕНИЯ Основной закон теории упругости (обобщенный закон Гука)

ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ МАЛЫХ УПРУГО-ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ Законы активной упруго-пластической деформации и разгрузки

Основные законы

Уравнение основное

Уравнения Уравнения упругости

Уравнения основные

Уравнения упругие 58, 61, 92, 104 — Закон

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте