Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Использование вариационных принципо

Результаты теоретических и экспериментальных исследований ползучести гибких, шарнирно опертых по краю сферических оболочек под действием постоянного внешнего давления приведены в работе [82]. Численные исследования проведены на основе вариационного уравнения смешанного типа, ползучесть материала описана теорией течения. Силы, моменты, перемещения аппроксимированы полиномами с двумя-тремя искомыми параметрами. Использование вариационного принципа [72] приводит к системе дифференциальных уравнений по времени, которые интегрируются методом Рунге — Кут-та. Время потери устойчивости оболочки определяется ло резкому осесимметричному выпучиванию. Описаны методика и результаты экспериментальных исследований ползучести нейлоновых оболочек. Отмечается большой разброс значений критического времени в дублирующих опытах, значительные расхождения в результатах теоретических и экспериментальных исследований.  [c.10]


ИСПОЛЬЗОВАНИЕ ВАРИАЦИОННЫХ ПРИНЦИПОВ ДЛЯ ПОСТРОЕНИЯ ОСНОВНЫХ ЗАВИСИМОСТЕЙ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ  [c.63]

Оба метода при использовании вариационного принципа и соответ-ствуюш,их разностных схем могут быть сведены к одним и тем же уравнениям [9] и одинаково пригодны для решения задач подобного типа. С точки зрения практической реализации на ЭВМ МКЭ целесообразно использовать для задач с контуром сложного очертания, для которых необходима сильно нерегулярная структура сетки получающуюся при этом систему линейных алгебраических уравнений практически можно решать только одним из прямых методов. Метод конечных разностей для подобных задач требует сгущения сетки, однако структура уравнений в этом методе упрощается, и даже частичное использование регулярной сетки позволяет сильно уменьшить количество различных коэффициентов уравнений систему уравнений при этом можно решать как прямым, так и итерационным методом.  [c.103]

В работе излагается метод определения динамических характеристик прямоугольных пластинок с вырезами. Метод основан на использовании вариационных принципов совместно с методом конечных разностей. Для выражения потенциальной энергии деформации подобластей, на которые разбивалась пластинка, была разработана теория пересекающихся сеток. Использование этой теории продемонстрировано на примерах, относящихся к внутренним и граничным узловым точкам. Были получены и экспериментально проверены собственные частоты колебаний и соответствующие им формы для прямоугольных пластинок с одним и двумя вырезами.  [c.114]

При непосредственном использовании вариационного принципа для решения задачи (применением прямых методов ) соотношение (27.7) оказывается более удобным, чем классический принцип (27.10). Дело в том, что в случае (27.10) аппроксимирующая функция (зависящая и от варьируемых параметров) должна совпадать с точным решением при т = О и при т = /. В случае же (27.7) требуется выполнение на-  [c.154]

В целом для решения нелинейных задач требуются более мощные методы, и постепенно была осознана возможность использования вариационных принципов. Они, по-видимому, обеспечивают корректный математический аппарат для выяснения ряда вопросов, связанных как с линейными, так и с нелинейными задачами. Судя по успехам, достигнутым недавно при помощи такого вариационного подхода, он привел к совершенно новому взгляду на вещи. Этот подход в упрощенном виде для линейных волн излагается в гл. 11, а во всей общности описывается в гл. 14  [c.18]

Для выяснения физического смысла условий равновесия термодинамических систем полезно еще раз обратиться к аналогии между термодинамическими и механическими системами. Эта аналогия имеет в данном случае серьезные основания критерий (11.1), сформулированный Гиббсом, является по существу обобщением соответствующих вариационных принципов классической механики на термодинамические системы. При этом, несмотря на использование нового, не имеющего механического аналога физического закона (второго закона термодинамики), Гиббс применил не только принятые в теоретической механике методы, но и ее терминологию.  [c.104]


Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]

Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]

Принцип Даламбера более элементарен по сравнению с остальными вариационными принципами, так как он не требует интегрирования повремени. Недостатком принципа является то, что виртуальная работа сил инерции есть поли-генная величина, не сводимая к одной скалярной функции. Это делает его неудобным при использовании криволинейных координат. Однако во многих простых задачах динамики, которые могут быть рассмотрены при помощи прямоугольных координат или векторными методами вообще без всяких координат, принцип Даламбера очень полезен.  [c.116]

Связь аналитической механики и современной физики. Два великих достижения современной физики теория относительности и квантовая механика — теснейшим образом связаны с аналитической механикой. Теория относительности Эйнштейна революционизировала все области физики. Было показано, что ньютонова механика справедлива лишь приближенно для скоростей, малых по сравнению со скоростью света. Однако аналитический метод, основанный на использовании принципа наименьшего действия, остался неизменным. Модифицирована была лишь функция Лагранжа получение же дифференциальных уравнений движения из принципа минимума осталось. Действительно, полная независимость вариационного принципа от какой-либо специальной системы отсчета делала его особенно ценным для построения уравнений, удовлетворяющих принципу общей относительности. Этот принцип требует, чтобы основные уравнения природы оставались инвариантными при произвольных преобразованиях координат.  [c.394]

В главах XV и XVI обращено внимание на формулирование основных фундаментальных вариационных принципов механики деформируемого тела, на их дуальность и вытекающую из нее дуальность методов сил и перемещений. Примеры, приведенные в главе XVI, призваны помочь читателю уяснить механический смысл вопросов. Алгоритмический же и вычислительный аспекты вопроса, в том числе в связи с использованием ЭВМ при расчете сложных конструкций, обсуждается, из-за ограниченности объема книги, лишь в общих чертах и даются указания на литературные источники, где этот аспект освещен подробно. Думается, что даже такое знакомство с новыми вопросами расширит кругозор читателю, а указания на основные литературные источники будут способствовать этому.  [c.8]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Они позволяют точно или приближенно рассчитывать напряженно-деформированное состояние и деформирующие силы, минуя, как и в методе линий скольжения и характеристик, интегрирование дифференциальных уравнений движения и равновесия в частных производных. Это достигается использованием экстремальных и вариационных принципов, которые основываются на законе сохранения энергии. Вариационные методы позволяют решать наиболее сложные задачи в общей их постановке с минимальным числом упрощений и допущений. Эти методы в настоящее время интенсивно развиваются и совершенствуются. Их успех обусловлен также широким внедрением в науку и производство современных быстродействующих электронных вычислительных машин.  [c.294]

Осесимметричное нагружение дисков рассмотрим как наиболее типичное при оценке статической прочности. В качестве расчетного метода использован метод конечных элементов (МКЭ). Это не единственный возможный метод расчета известно применение и других методов дискретизации пространственной задачи к расчету дисков (метод конечных разностей, вариационно-разностный [2, 43, 100]). МКЭ наиболее широко применяют в прикладных задачах 47]. Можно отметить простоту формулировок основных принципов, ясность физической интерпретации, свободу размещения узловых точек, симметрию матриц жесткости элементов и системы уравнений, облегчающую контроль расчетов. При выборе в качестве неизвестных узловых перемещений матрица разрешающей системы будет симметричной, положительно определенной (при исключении перемещения диска как жесткого целого) и иметь ленточную структуру. Это способствует быстрому решению системы разрешающих уравнений прямыми или итерационными методами. Методу конечных элементов посвящено большое число работ [3, 46, 53, 114, 119]. Приведенные в гл, 4 результаты получены ДЛЯ простейшего кольцевого элемента треугольного сечения, однако основные соображения, использованные в решении, имеют достаточно общий характер и применимы как для плоской задачи, так и при более сложных элементах в осесимметричном случае.  [c.153]


Оба описанных способа основываются на дифференциальных уравнениях теории упругости, но ими не исчерпываются возможные подходы к решению задач. Еще одна возможность заключена в использовании минимальных энергетических принципов и в применении основанных на них прямых методов решения вариационных задач.  [c.126]

Построена и изучена с точки зрения стационарности и экстремальности система полных и частных функционалов в случае разрывных полей перемещений, деформаций, напряжений и функций напряжений некоторые вариационные принципы для таких полей впервые рассматривались В. Прагером [0.12]. Аналогичные вопросы рассмотрены и в теории оболочек. Необходимость рассматривать разрывные поля в качестве возможных состояний упругого тела возникает иногда при численном решении задач, в частности при использовании метода конечных элементов.  [c.10]

Дифференциальные уравнения движения (равновесия) не всегда удобны при использовании численных методов, поскольку требуют повышенной гладкости функций по сравнению со слабой формой уравнений (формулируемой в виде уравнения принципа возможных перемещений). При квазистатическом деформировании тел при некоторых ограничениях на внешние силы и используемые уравнения можно сформулировать вариационные принципы относительно скоростей (приращений) [24, 27, 47, 73, 75, 78, 79, 81, 84, 88, 97, 98, 119]. Функционал, используемый в вариационном принципе, позволяет в некоторых случаях выделить каче-  [c.10]

Естественно, что каждый из полученных таким образом вариационных принципов позволяет удовлетворить вариационным методом тем уравнениям теории оболочек, которые не были присоединены к (У.5) и (У.б) в качестве предварительных. Для принципа Лагранжа такими уравнениями являются условия равновесия и статические граничные условия, а для принципа Кастилиано — соотношения неразрывности деформаций (1.35). При использовании этих принципов перечисленные уравнения выполняются как бы автоматически и нет надобности удовлетворять им заранее.  [c.91]

Даже в тех случаях, когда сила в точности известна, закон сохранения может оказать существенную помощь при рещении задач о движении частиц. Для решения новых задач больщин-ство физиков следует раз навсегда установленному порядку , прежде всего один за другим применяются соответствующие законы сохранения, и только после этого, если в задаче ничего не упущено, переходят к решению дифференциальных уравне-йий, использованию вариационного принципа или метода возмущений, применению вычислительных машин и других средств, имеющихся в нашем распоряжении, или полагаются на интуицию. В гл. 7 и 9 мы используем таким путем законы сохранения энергии и импульса.  [c.149]

Вариационными методами называются методы точного и приближенного решения задач, основанные на использовании экстремальных свойств некоторых функционалов. Здесь мы рассмотрим так называемый метод Ритца, а также близкий к нему, хотя и не основанный непосредственно на использовании вариационного принципа, метод Бубнова.  [c.388]

Метод Ритца решения задач о равновесии упругого тела основан на использовании вариационного принципа (9.8) или, в более общей формулировке, непосредственно уравнения (9.4). Этот метод состоит в следующем. Ищем решение для перемещений в виде конечной или бесконечной суммы  [c.392]

Основные преимущества МКЭ проистекают из его сеточного (разбивка на конечные элементы) и вариационного (использование вариационных принципов) характера. Вариационный подход расширяет класс допустимых функций и, в частности, позволяет конструировать решение при помощи не очень гладких, но, что важно, локализованных функций. Вариационный подход позволяет также исключить из специального рассмотрения естественные граничные условия. Наконец, сеточный характер МКЭ облегчает известные трудности, связанные с выбором базисных функций в вариационньк методах. В классических вариационных методах, изложенных в гл. 1.4, этот выбор сильно усложняется их зависимостью от конфигурации рассматриваемой области. В МКЭ такой зависимости нет. Влияние сеточных методов на МКЭ приводит к тому, что разрешающие системы алгебраических уравнений оказываются хорошо обусловленными, с редко заполненными матрицами, и, что очень важно, формирование таких матриц оказывается сравнительно простым.  [c.54]

Из приведенного примера следует, что гауссовское приближение в сочетании с методом условных решений позволяет вскрыть основные качественные особенности поведения нелинейной стохастической системы и получить удовлетворительные количественные оценки. Отказ от гипотезы гауссовости и построение решения в виде ряда с использованием вариационного принципа приводит в рассмотренном примере к повышению точности результатов, как и для систем с симметричными характеристиками.  [c.81]

Стационарная задача о термоупругом равновесии полого цилиндра (в случае осевой симметрии) изучалась сперва П. М. Огибаловым (1954), а затем Ю. Н. Шевченко (1958), который учитывал изменение модуля упругости материала вдоль оси цилиндра. А. Н. Подгорный (1965) учел влияние торцов цилиндра, а также центробежных сил задача решена приближенно с использованием вариационного принципа Лаграннш. П. И. Ермаков (1961) и В. А. Шачнев (1962) рассматривали стационарную задачу термоупругости для сплошного цилиндра конечной длины при осесимметричной его деформации в первой из этих работ условия на торцах выполнялись приближенно, согласно методу Бидермана, а во второй — решение задачи сведено к решению интегро-дифференциального уравнения. Стационарная задача термоупругости для бесконечного цилиндра с несколькими полостями сформулирована А. С. Космодамианским (1962) — как температурное поле, так и термоупругое состояние определяются методом Бубнова — Галеркина.  [c.21]

В работе М. И. Рейтмана (1964) задача о динамическом деформировании жестко-пластической оболочки, материал которой подчиняется условию Треска, решена с использованием вариационного принципа (2.3) и обобщенного метода Ритца. При этом механизм деформирования, в отличие от описанных выше работ, характеризуется не сосредоточенными, а распределенными деформациями удлинения и изгиба.  [c.323]

Метод Ритца. Метод Ритца представляет собой приближенный метод решения задачи о равновесии упругого тела и основан на использовании вариационного принципа. Он сводится к построению последовательности функций, минимизирующей функ-  [c.451]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]


Остальные задачи дополнительного раздела главы посвящены дискретным система.м (ячеистая модель жидкости в этом отношении является как бы переходной). Это и задачи на использование регулярных методов (низкие и высокие температуры) или на использование приближения Брегга—Вильямса. В раздел задач вынесено доказательство ряда теорем общего характера, не являющихся специально статистическими, которые используются в основном тексте главы при выводе вариационной теоремы Боголюбова в общем виде (вариант ее вывода приведен в задаче 33). И последний параграф — это использование вариационного принципа применительно к характерным задачам теории дискретных систем при простейшем однопараметровом выборе нулевого гамильтониана. В задаче 28 показано, что полученные таким образом решения, эквивалентные результатам приближения Брегга—Вильямса, при специальном выборе взаимодействия узлов (бесконечно слабое взаимодействие с бесконечным радиусом его действия) являются точными в пределе N 00.  [c.716]

Предлагаемая вниманию читателя книга В. Прагера — одного из основоположников теории оптимального проектирования конструкций (широко известного также своими фундаментальными работами в теории пластичности), посвящена результатам в данной области, полученным за последнее десятилетие. Главная их часть основана на использовании в оптимальном проектировании конструкций классических вариационных принципов. Непосредственное применение методов вариационного исчисления к оптимальному проектированию конструкций приводит лишь к необходимым условиям стационарности оптимизируемого параметра, не гарантируя его локальной или глобальной минимальности (или максимальности). Достаточные условия оптимальности в ряде случаев можно получить, используя для рассматриваемого класса конструкций соответствующий вариационный принцип.  [c.5]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

Наиболее часто в практике используют расчеты, основанные на вариационном принципе Лагранжа. Выше, в 5 этот принцип был использован для вывода фференциального уравнения изгиба пластины и граничных условий. Ниже будет рассмотрено применение некоторых прямых методов вариационного исчисления (метода Ритца, метода Бубнова—Галеркина и метода Канторовича).  [c.96]

Вариационные принципы, эквивалентные постановкам задачи в дифференциальной форме, удобно использовать для получения решений краевых задач методами Ритца, конечных элементов, другими численными методами [21]. Поскольку в функционалах содержатся производные более низкого порядка, чем в соответствующих дифференциальных уравнениях, это допускает использование для нахождения решения менее гладких фзгнкций.  [c.192]

К основным методам решения квазистати-ческих трехмерных задач теории упругих температурных напряжений относят методы, основанные на использовании термоупругого потенциала перемещений, вариационных принципов, а также методы возмущений, Майзеля и др. [43, 54, 57, 68, 73]. Для решения плоских задач могут быть ис-  [c.213]

Формулировку вариационных принципов этой теории, так же как и теории упругости для сплошного тела (см. гл. 3, 6), можно обобщить, рассматривая в качестве варьируемых переменных разрывные поля перемещений, деформаций, усилий и функций напряжений. Вариационные принципы при разрывных полях параметров напряженно-деформированного состояния могут служить для построения алгоритмов расчета оболочек, в частности при использовании метода Ритца и метода конечных элементов, а также для решения некоторых контактных задач.  [c.132]

В предлагаемой вниманию читателя книге содержится систематическое изложение вариационных принципов и их приложений к различным задачам статики и динамики деформируемых твердых тел и конструкций. Книга публиковалась на английском языке издательством Пергамон пресс трижды (в 1968, 1975 и 1982 гг.). При подготовке к печати второго и в особенности третьего издания текст книги существенно перерабатывался и в него вносились значительные дополнения, отражающие новые результаты использования вариационных методов и применения вариационных принципов в методах конечных элементов. Настоящий перевод осуществлен с третьего издания.  [c.5]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

В настоящей главе дается описание известных искривленных конечных элементов тонких оболочек, поотроенных в предположении справедливости гипотез Кирхгофа-Лява. Исходным вариационным принципом для всех злементов из зтой главы является принцип Лагранжа, и вое они объединяются единым методом построения матрицы жесткости - классическим методом перемещений ( I.I). Большое внимание уделено качественным аспектам используемых аппроксимаций с точки зрения даваемой ими точности при изменении геометрических параметров злемента - толщины и степени непологости ( 1.2,4,7). Рассмотрены вопросы построения аппроксимаций, удовлетворяющих необходимым условиям глад- кости, как для треугольных ( 1.3,4), так и четырвхугольннх злементов ( 1.2,5). Описаны способы ослабления требований гладкости первых производных от прогиба с помощью методов штрафа и множителей Лагранжа и даются примеры их использования для оболочек ( 1.9,10). Много места уделено особенностям расчета оболочек сложной геометрии в отличив от оболочек канонических форм ( 1.4, 5,7). Затронуты вопросы параметризации поверхности оболочки в случае дискретного задания ее геометрии и приведены требования к аппроксимации радиуса-вектора средин-нйй поверхности ( 1.5,6). Дается сравнительный анализ точности, даваемой различными КЭ, на примере некоторых общепринятых задач ( 1.8).  [c.16]


Особое внимание уделено смешанным вариационным формулировкам двух типов. Первая соответствует смешанному вариационному принципу Рейссиера, вторая — задачам на экстремум полной потенциальной энергии системы при наличии дополнительных условий в виде дифференциальных уравнений связи между перемещениями и их производными. Для одномерных задач предлагается вариационно-матричный способ вывода канонических систем разрешающих дифференциальных уравнений. Для двумерных задач рассматриваются вопросы реализации решений с использованием проекционных методов типа Рэлея—Ритца и конечных элементов с учетом специфики смешанной вариационной формулировки.  [c.5]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

И. В. Андрианов и А. А. Дисковский [66] изложили метод исследования влияния вырезов на собственные частоты колебаний прямоугольных пластин, основанный на применении вариационного принципа Рейсснера. В качестве примера рассмотрены собственные колебания квадратной пластины с центральным круговым вырезом. Определению собственных форм и частот колебаний прямоугольных пластин с вырезами, жёстко защемленных по внешнему и внутреннему контурам, посвящено исследование Л. В. Курпы [67]. Описанная ею задача решена структурным методом, в основе которого лежит использование -функций. Данные в работе примеры относятся к расчету собственных форм и частот колебаний для прямоугольных и квадратных пластинок с центральным круговым и квадратным вырезом, а также со смещенным круговым отверстием для прямоугольной пластинки.  [c.299]


Смотреть страницы где упоминается термин Метод Использование вариационных принципо : [c.32]    [c.187]    [c.370]    [c.2]    [c.244]    [c.198]    [c.12]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.63 , c.64 ]



ПОИСК



288 — Использование 168 — Методы

Метод вариационный

Принцип вариационный

Принцип метода

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте