Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

714—745 — Химическая обработк форм — Составы

Получение форм с отпечатками орнамента из сыпучих песков и порошков, упрочняемых перепадом давления воздуха. Формирование литой поверхности деталей (отливок) в формах из сыпучих песков и порошков существенно отличается от процессов, протекающих в формах, изготовленных из формовочных смесей с органическими и неорганическими связующими [36]. Известно, что почти все металлы в жидком состоянии (сталь, чугун, титан и др.) агрессивны и характеризуются повышенной химической активностью. По этой причине иа границе контакта жидкого металла с формой очень легко образуются продукты взаимодействия—конгломерат из окислов и силикатов металлов. Для образования таких соединений необходимо поступление в зону контакта кроме молекул кислорода Ог еще и активных ионов ОН, так как только в присутствии ОН происходят диссоциация окислов, входящих в состав наполнителей смеси, и образование продуктов взаимодействия. Главными поставщиками О2 и ОН в зону контакта являются легкоплавкие окислы, гидраты и другие соединения, содержащиеся в органических и неорганических связующих. Поэтому для получения высококачественных отливок с низкой шероховатостью поверхности литейные формы подвергают сушке и высокотемпературному обжигу. Применение тепловой обработки форм повышает трудоемкость изготовления и себестоимость отливок. Новый способ  [c.152]


Для устранения недостатков различных видов топлива, повышения их качества, придания новых необходимых для хода технологических процессов свойств естественное топливо подвергают обработке, в результате которой получают искусственное топливо. Различают две группы методов обработки естественного топлива физико-механическую и физико-химическую. К физикомеханической группе относятся сортировка, дробление, обогащение, брикетирование и пылеприготовление. При такой обработке химические свойства топлива не меняются, а изменяются внешний вид, форма и размеры кусков. При физико-химической обработке (сушка, сухая перегонка и термообработка) меняются состав топлива и его свойства.  [c.28]

Состав электролита, режим электролиза, природа подложки и другие факторы, например наличие примесей органического и неорганического характера, способ предварительной механической, термической, химической обработки, обусловливают различие в образовании зародышей, их росте и, как следствие, многообразие форм кристаллизации.  [c.35]

НИЯ требуемых изменений формы, размеров и состояния обрабатываемых материалов, а также для перемещения последних в производственном потоке в) энергия для привода производственного и транспортного оборудования и для выполнения различных видов физической и химической обработки материалов г) состав работающих, которые из материалов с помощью рационально выбранного оборудования и необходимых видов энергии изготовят заданную продукцию и обеспечат ее выпуск в предусмотренное время. Элементам производства придают собирательный смысл.  [c.7]

Сварочная проволока. При дуговой сварке большинства соединений требуется проволока, металл которой заполняет зазоры, а также обеспечивает формирование шва в соответствии с размерами, установленными ГОСТ 14806—80. Кроме того, проволока позволяет изменять состав шва, что особенно важно при сварке алюминиевых сплавов, у которых при одинаковом химическом составе прочностные, коррозионные и многие другие свойства литого шва хуже, чем у соединяемых листов, пресс-профилей и других полуфабрикатов, подвергнутых термической или механической обработке. Применение упрочняющей обработки для литого металла шва и зоны сплавления не всегда возможно из-за формы и размеров сваренных изделий, поэтому свойства этих участков соединения обычно улучшают, изменяя их химический и фазовый состав с помощью проволоки. Требуемый для легирования состав проволоки выбирают с учетом химического состава свариваемых кромок и доли участия проволоки в образовании шва. Для дуговой сварки в инертных газах содержание каждого элемента в проволоке можно рассчитать из уравнения  [c.25]

Как показано выше, для обеспечения долговечности практически всех типов металлургических валков их производят из отбеленного чугуна. Из многочисленных факторов, определяющих структуру чугуна валка, отметим лишь основные химический состав сплава, режим его охлаждения в форме и условия подготовки сплава (шихтовые материалы, температурно-временная обработка и т.д.).  [c.333]

Основное требование к методам испытаний металлов на контактную усталость — проведение их в условиях, возможно ближе моделирующих условия эксплуатации металлов в конструкциях клк машинах. Это — вид нагружения образцов, выбор смазки и способ подвода ее к образцу, химический состав и структурное состояние металла, наличие концентраторов напряжений и их форма, характер обработки поверхности образцов и др. Испытания на контактную усталость выполняют при нагружении по следующим схемам  [c.273]


Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации.  [c.47]

К преимуществам пайки относятся отсутствие плавления и незначительный нагрев основного металла, позволяющий во многих случаях сохранить неизменными его химический состав, структуру и механические свойства, чистота соединения, не требующая в большинстве случаев последующей обработки, сохранение точных размеров и формы изделия, отсутствие внутренних напряжений, высокая прочность соединения и высокая производительность, широкие возможности механизации и автоматизации производства, возможность использования малоквалифицированной рабочей силы, дешевизна и простота процесса и т. д.  [c.443]

Цевочные колеса F 16 Н 55/10 Целлофан изготовление экструзией В 29 С 47/00 химический состав С 08 В 9/00) Целлюлоза, использование в качестве ( (фильтрующего В 01 D 39/(04-18) формовочного В 29 К 1 00) материала эмульгатора В 01 F 17/48) Цементация изделий диффузионными способами С 23 С 8/00-12/02 Цементно-бетонные трубы F 16 L 9/08 Цементы (смешивание с другими материалами В 28 С 5/00-5/46) Центральное отопление F 24 (конструктивные элементы Н 9/00-9/20, D 19/(00-10) системы D 1/00-15/00) Центрирование <(см. также центровка) заготовок (при вырубке или высечке В 21 D 28/04 для сверления или расточки В 23 В 49/04) форм в устройствах для формования пластических материалов В 29 С 33/(30-32)) Центрифуги [В 04 В (вентиляция 15/08 загрузка (непрерывная 11/02 периодическая 11/04) конструктивные элементы и вспомогательные устройства 7/00-15/12 очистка барабанов 15/06 приводы 9/00-9/14 разгрузка (непрерывная 11/02 периодическая 11/(04-05)) типы 1/00-5/12) использование (для обработки формовочных смесей для литейного производства В 22 С 5/02 для отделения осадка при разделении материалов В 01 D 21/26 для отливки пластмасс в формах В 29 С 39/08, 41/04 для разделения газов и паров В 01 D 53/24 для сушки F 26 В 5/08 13/24) чистка В 08 В 9/20] Центрифугирование металлов как способ их рафинирования С 22 В 9/02 как способ очистки воды и сточных вод С 02 F 1/38) Центробежные [F 04 D (вентиляторы 17/(00-18) компрессоры (17/(00-18) роторы и лопатки 29/(28-30)) насосы (1/00-1/14 кожухи, корпуса, патрубки 29/(42-50) многоступенчатые 1/06 роторы и лопатки 29/(22-24))) F 16 (масленки для консистентной смазки N 11/12 муфты автоматические выключаемые D 43/(04-18)) маятниковые мельницы В 02 С 15/02 ]  [c.207]

Различают внешние и внутренние факторы. К внешним факторам относятся температура, тип надреза или концентратора напряжений, условия и скорость нагружения, характер окружающей среды, форма и размеры детали. К внутренним факторам, присущим материалу, относятся тип кристаллической решетки, химический состав, структура и размер зерна, зависящий от технологии предшествующей обработки.  [c.19]

Химический состав материала, подлежащего обработке щетками, его твердость, форма изделия.  [c.132]

Усталостные характеристики оказываются очень чувствительными к условиям проведения испытаний. Помимо таких условий, как химический состав, микроструктура, температура, термообработка, которые существенно влияют и на данные статических испытаний, серьезное влияние оказывают чистота механической обработки поверхности, форма образца, его размеры, характер испытаний и т. п. Например, предел текучести, определенный для одного и того же материала из опытов на растяжение цилиндрического образца и из опытов на изгиб бруса, на образцах с полированной поверхностью и на образцах, обработанных резцом на токарном станке, будет, по суш еству, одним и тем же. Пределы же усталости, определенные из опытов на растяжение— сжатие и из опытов на изгиб, иногда очень сильно, отличаются, причем разница достигает 40 — 50% (по отношению к меньшей из величин). Несопоставимые данные об усталостных характеристиках получаются из испытаний двух образцов при прочих равных условиях, один из которых хорошо отшлифован, а другой грубо обработан на токарном станке. Небезразличным также оказывается, ведутся ли испытания на знакопеременный симметричный изгиб в одной и той же физической плоскости цилиндрического образца или путем вращения вокруг криволинейной оси изогнутого образца, как это делается в ряде испытательных машин на усталость, когда все диаметральные сечения образца проходят одну и ту же историю напряжений. В справочниках данные об усталости обычно приводятся для трех видов типовых испытаний на изгиб, на одноосное растяжение—сжатие и на кручение (соответствующие пределы усталости обозначаются  [c.307]


Причинами появления горячих и холодных трещин могут быть неправильная конструкция отливки с резким переходом от толстых к тонким сечениям острые внутренние углы в отливках сопротивление форм и стержней нормальной усадке металла из-за чрезмерной плотности набивки неправильно подготовленный состав формовочной и стержневой смесей, малая податливость их, неправильное расположение ребер опок или каркасов в стержнях, что препятствует усадке отливки неправильный химический состав, т. е. повышенное содержание элементов, увеличивающих усадку или уменьшающих предел прочности при высоких температурах неправильный режим заварки и термической обработки заливка слишком горячим металлом и неправильный подвод металла, что ухудшает равномерное остывание отдельных частей отливки удары при отбивке литников или при транспортировке отливок, имеющих большие внутренние напряжения.  [c.193]

В испытаниях первой группы используют образцы определенной и постоянной формы и размеров. Для большинства образцов они установлены стандартами. Следовательно, в этих испытаниях механические свойства определяются в условиях одинакового заранее задаваемого напряженного состояния. Несомненное преимущество таких испытаний — возможность характеристики и сравнения как свойств материалов разных плавок, неизбежно отличающихся химическим составом, способом изготовления и обработкой, так и изменений, вносимых в их химический состав или в условия обработки. Другое преимущество — сравнительная простота в выполнении испытаний и независимость их от большого числа переменных факторов, которые могли бы проявляться в ходе испытания. Ценность испытаний этого типа дополнительно возрастает в связи с тем, что они выполняются в течение многих лет (в том числе известные испытания на растяжение или на усталость более 100 лет). Поэтому для разных металлов в технической литературе — справочниках и монографиях — накопился очень большой и систематизированный материал,  [c.134]

Указать химический состав, марку углеродистой (для долот простой формы) и легированной сталей (для крупных долот сложной формы) и режим термической обработки, обеспечивающей получение требуемых структуры и твердости.  [c.374]

Привести химический состав стали для форм, применяемых для литья выбранного сплава, и указать режим термической обработки, а также структуру стали в готовом изделии.  [c.376]

На стойкость инструмента большое влияние оказывает его форма, материал, из которого он изготовляется, и термическая обработка. Практикой производства и работами исследовательских институтов и лабораторий установлен оптимальный химический состав и лучшие режимы термической обработки различных видов инструмента. Ниже приводятся эти данные.  [c.262]

Определение марки стали по искре. В производственных условиях можно приблизительно определить марку стали путем искровой пробы. Основана эта проба на том, что при обработке стали абразивными кругами образуется мелкая стружка, которая, сгорая в воздухе, дает сноп искр (рис. 18, стр. 64), отличающихся друг от друга по форме и цвету. Чем больше в стали содержится углерода, тем больше в ее искрах светлых звездочек. Присутствие в стали вольфрама можно установить по красному цвету искр, наличие хрома — по оранжевому и т. д. Таким образом, при известном навыке проба на искру позволяет приблизительно судить о химическом составе стали. Более точно химический состав стали определяют в специальных заводских лабораториях.  [c.31]

Проба на искру (рис. 14) позволяет приближенно определять химический состав (марку) стали. Искра образуется при обработке стали шлифовальным кругом на заточном станке. Каждая марка стали имеет цвет и форму искр, характерные только для нее. Например, при испытании углеродистой стали, содержащей 0,5% углерода, получается длинный светло-желтый пучок искр без звездочек. С повышением количества углерода в стали пучок укорачивается и расширяется, а количество звездочек увеличивается.  [c.36]

В отличие от поверхностной закалки при химико-термической обработке разница в свойствах достигается не только изменением структуры металла, но и его химического состава. ХТО не зависит от формы деталей. Она обеспечивает получение упрочненного слоя одинаковой толщины по всей поверхности. ХТО дает более существенное различие в свойствах поверхности и сердцевины деталей. ХТО изменяет химический состав и структуру поверхностного слоя, а поверхностная закалка — только структуру.  [c.171]

Пояснения. В отличие от стали химический состав чугуна еще не характеризует достаточно надежно его свойств. Структура чугуна и его основные свойства зависят как от химического состава, так и от технологического процесса производства и режима термической обработки. В зависимости от условий кристаллизации и формы углерода различают чугуны белые, серые и ковкие.  [c.92]

В условиях высоких температур (Гп=1500°С) продукты взаимодействия образуются в результате химических реакций с участием газовой фазы, состав которой зависит от исходных материалов покрытий и смесей формы и может включать О2, Нг, Н2О, СО2, СО, NHa, N2, SO2, H2S, СН4 и др. Источниками поступления газов в контактную зону отливки и формы являются жидкий металл, органические и неорганические связующие, химически нестойкие наполнители, а также воздух и вода, адсорбированные поверхностью. Удаление воды из контактной зоны формы возможно только путем предварительной тепловой и химической обработки исходных материалов и покрытий форм. Температура выделения воды из неорганических материалов зависит 01 типа воды при 200—550° С выделяется кристаллизационная вода, при 300—500° С — адсорбционная, при 300—1300° С — конституционная, при 110° С — гигроскопическая и при 105° С — капиллярно-гравитационная. Вода, выделяющаяся при пиролизе и термодеструкции органических связующих, поступает в зону контакта в большинстве случаев в течение почти всего периода формирования отливки СвНюОа- БНгО+бС  [c.97]

Степень разрушения во многом определяется свойствами материалов, подвергающихся кавитации. К таким свойствам относятся поверхностная твердость, коррозионная усталость, стойкость, прочность, обрабатываемость поверхности, пористость и состав металла. По мнению Новотного, пористая поверхность подвергается более равномерному разрушению. Богачев и Минц [31] детально исследовали кавитационное разрушение чугуна в зависимости от его химического состава, формы графита и характера тепловой обработки. При этом было установлено, что наибольшей сопротивляемостью кавитационному разрушению обладают чугуны, в которых графит находится в виде глобул. По мнению этих авторов, разрущение чугуна начинается с разрушения графитовых включений. Поэтому такому разрушению довольно легко подвергается слоистый графитовый чугун. Наблюдаемое в этом случае нарушение целостности основы, которое вызывается эрозией графита, способствует быстрому разрушению всего испытуемого образца, в то время как при глобулярном строении графита разрушение носит локальный характер и ограничивается изолированными участками, занятыми графитом. Отсюда следует, что мартен-ситные и ферритные матрицы являются, по-видимому, малоустойчивыми, в то время как тонкодисперсные перлитные, бентонитные и сорбитные структуры имеют более высокую сопротивляемость.  [c.142]


Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

В качестве исходного материала для изготовления металлокерамических фильтров используют бронзовую луженую дробь (ТУ 601—62) с частицами различной сферической формы диаметром до 0,3 мм (в зависимости от требуемой тонкости фильтрования). Химический состав бронзы медь 90,5—92,5%, олово 7,5— 9,5%. Форма фильтров в виде цилиндрических стаканов (может быть и любая другая форма). Бронзовый порошок насыпают в пресс-форму и спекают. Спекание производится в пресс-формах, изготовленных из стали 1X13, качество обработки внутренних поверхностей — 9-й класс шероховатости.  [c.282]

Акад. А. А. Бочвар и его сотрудники разработали самозакаливающийся цинковистый силумин, которому была присвоена марка АЛ 11 (ГОСТ 2685—63). Химический состав этого сплава 6—8% 51, 10— 14% 2п, 0,1—0,3% М . Механические свойства сплава без термической обработки следующие литой в землю Ов = 20 кГ1мм , б = 2%, НВ 80 литой в металлические формы ов = 25 кГ1мм , б = 1,5%, В В 90.  [c.86]

Цены на переработку не могут быть строго фиксированы. Они зависят от многих локальных и общих факторов, таких, как тип топлива, его количество в партии, доставленной заказчиком на переработку, обогащение ураном и глубина вйгврания, время выдержки на АЭС, количество накопленного плутония и его изотопный состав, амортизационные отчисления, долгосрочное содержание отходов в хранилищах, методы концентрирования и окончательного удаления отходов и пр. При определении цен на химическую переработку стоимость невыгоревшего регенерированного урана и плутония, а также образовавшихся трансурановых элементов может условно приниматься равной нулю. При приеме заказов заводы капиталистических фирм в контрактах оговаривают допустимые безвозвратные потери при переработке урана и плутония. Прогнозируется, что в ближайшие 10—15 лет затраты на транспортирование, переработку и хранение отходов возрастут в 1,5—2 раза. Экономические оценки затрат по переработке и хранению радиоактивных отходов еще весьма неопределены. На симпозиуме МАГАТЭ (Вена, 1976 г.), посвященном обращению с радиоактивными отходами, американские ученые оценивали расходы на обращение с отходами, включая полную обработку газообразных продуктов деления, в 25—30%, а английские — в 50—60% общей стоимости химической переработки отработавшего топлива. При этом всеми специалистами признается необходимость концентрировать отходы, сокращать их объемы на всех переделах и транспортировать отходы в формах, сводящих к минимуму риск их рассеяния. Различные отходы стремятся не смешивать, а разделять по уровням активности, химическим и физическим свойствам и решать вопросы захоронения раздельно. В ряде стран считается целесообразным хранить отвержденные отходы в течение 30— 50 лет в контролируемых поверхностных хранилищах с воздушным (включая естественную тягу) или водяным охлаждением в возвратимом состоянии, т. е. пригодном для извлечения и транспортирования до их окончательного захоронения.  [c.390]

Выделения у"-фазы в сплаве 718 имеют форму дисков, ориентационное соотношение которых с матрицей выглядит как (ЮО)э " I lOOly, [ЮО] " <100>у. Об этом сообщает ряд исследователей [9, 10]. После термической обработки по режиму, принятому в промышленности, диаметр дисков равен 600 А (0,06 мкм), а толщина 50-90 А (0,005-0,009 мкм). Многие исследователи сообщают [8,9,30,32], что выделения -фазы интенсивно упрочняют сплав 718 за счет когерентных искажений на границе их раздела с у-матрицей деформацию, как меру этих искажений, оценивают в 2,86 % [8]. Когерентные искажения в этом сплаве могут быть ответственны и за быструю утрату стабильности при Т > 650 °С, поскольку являются движущей силой для огрубления выделившихся частиц. Стоит заметить, что сплав In onel 718 — один из немногих, химический состав которых рассчитан скорее на максимальную кратковременную прочность вплоть до 650 °С, нежели на выдающиеся характеристики длительной прочности при более высоких температурах.  [c.225]

При изготовлении чугунных втулок применяется центробежное литье. Чугун берется определенного состава, проверяемого анализом. Для плавки вместо вагранок применяются качающиеся электрические печи. Это позволяет обеспечить лучшие условия для контроля за ходом плавки и более равномерного распределения легирующих элементов, а также создать температуру, достаточно высокую для растворения всего графита, чтобы при охлаждении он принимал шаровидную форму, что придает металлу прочность и однородность. Взвешенные порции металла разливаются в стальные подогретые формы, вращающиеся до тех пор, пока металл не затвердеет. Скорость вращения составляет 1500— 3000 об1мин в зависимости от размера втулки. После извлечения из форм втулки отжигаются в течение часа при температуре 954° С, а затем охлаждаются с понижением температуры на 38° С в час до прохождения нижней критической точки. Структура чугуна отливок — шаровидный графит плюс перлитпо-ферритовая металлическая основа. Втулки, полученные из отливок механической обработкой, подвергаются закалке. Предел прочности втулок на растяжение составляет более 35 кГ/см . Химический состав чугуна (в %) никеля — 1,25 молибдена — 0,50 кремния — 2,00—2,20 серы — 0,04—0,07 фосфора — 0,20 общего углерода — 2,85—3,00 связанного углерода — 0,40—0,60 в отожженных втулках и 0,70—0,80 в закаленных втулках. Твердость закаленных втулок составляет HRG 40—44.  [c.270]

Самоподдерживающееся разрушение было обнаружено, например, на образцах оконного стекла, полученного методом вертикального вытягивания [ ]. Образцы имели форму квадрата со стороной 60 мм и нарезались алмазом из листов стекла размером 500 X 500 мм. Толщина образцов была от 1,7 до 3,2 мм в разных сериях опытов. Стекло имело приблизительно следующий химический состав 72 /о Si02, 157о НагО, 3% MgO, 8% СаО, 1,5—2% AI2O3. Упрочнение образцов производилось путем обработки их поверхности вспененной плавиковой кислотой на лабораторной установке, в результате чего удалялся дефектный поверхностный слой толщиной 100 мкм. Измерения прочности на симметричный изгиб производились на машине типа РМ с предельной нагрузкой 10 000 кГ. Для испытания образцов применялась квадратная опора с квадратным отверстием размером Во X 50 мм и дисковый пуансон диаметром 6 мм. На опору помещалась мягкая изоляция.  [c.477]

При определении механических характеристик материала и их использовании в процессе проектирования необходимо помнить, что характер разрушения зависит от многих факторов, связанных и не связанных со свойствами материала. Внешними факторами, не связанными со свойствами материала, являются 1) температура 2) тип концентратора напряжений 3) условия и скорость нагружения, характер напряженного состояния 4) форма и размеры 5) окружающ ая среда. К внутренним факторам, присущ им материалу, относятся обычные металлургические аспекты, как, например, химический состав, микроструктура и технология пред-шествующ ей обработки.  [c.103]

На скорость резания влияет химический состав стали, ее термическая обработка и характер структуры, получаемой при термической обработке. Так, при уменьшении содержания углерода в конструкционной углеродистой стали допускаемая скорость резания повышается, а при введении легирующих материалов (Сг, Мп и др.) понижается для стали 40Х наибольшая допустимая скорость резания будет при отжиге с 900° С, для стали 40 — при нормализации с 900—950° С, а для быстрорежущих сталей — при изотермическом отжиге . Наибольшая допу. стимая скорость резания наблюдается при зернистом перлите, когда цементит имеет форму мелких шарообразных зерен, равномерно распределенных в феррите, а из структур наибольшую скорость резания допускает феррит, затем (в порядке уменьшения допустимой скорости резания) перлит (точечный, зернистый, пластинчатый, сорбитообразный), сорбит и троостосорбит.  [c.105]

X. Глейтер [7] классифицировал НСМ на при категории. Первая категория включает материалы с уменьшенными разерами и размерностями в форме наночастиц, тонких проволок или тонких пленок, вмонтированных в материал. Вторая категория включает материалы, в которых наномикроструктура ограничена поверхностной нанообластью объемного материала. Это достигается путем химического осаждения из паровой фазы, ионной имплантацией, обработкой лазерным лучом и другими воздействиями. Такие обработки позволяют изменять химический состав и атомную структуру поверхностей твердого тела на нанометровом масштабе. Третья категория включает НСМ, в которых химический состав, атомный порядок и размер строительных блоков (например, кристаллы или атомные и молекулярные группы), образуя твердое тело, различаются по шкале длины на несколько нанометров по всему объему.  [c.148]


Новой группой твердых сплавов являются безвольфрамовые твердые сплавы, в которых карбид вольфрама заменен карбидом титана или карбонитридом титана, а в качестве связки используются никель, железо, молибден. Сплавы отличаются высокой окалиностойкостью, малым коэффициентом трения, пониженной склонностью к адгезии, меньшей плотностью, пониженной прочностью, склонностью к трещинообразованию при напайке. Они показывают хорошие результаты при получистовой обработке резанием вязких металлов, конструкционных и малолегированных сталей, меди, никеля и др. Химический состав и физико-механические свойства безвольфрамовых твердых сплавов приведены в табл. 2.8 там же указаны и параметры их микроструктуры. Форма и конструктивные размеры изделий из сплавов типа ТНМ должны соответствовать требованиям ГОСТ 2209 —69, ГОСТ 17163—71 и ТУ 48-10-113—74.  [c.87]

Сварка специальными стальными электродами. Применяют электроды из проволоки Св-08 или Св-08А со специальными покрытиями. Важную роль в покрытии играет ферросилиций, который помогает получить серый чугун. Этот способ используется для изделий несложной формы, работающих при незначительных нагрузках. При правильном и тщательном выполнении сварки можно добиться плотного сварного соединения, поддающегося механической обработке. К указанной группе электродов относятся электроды марки ЦЧ-4, в состав покрытия которых введены элементы, активно вступающие в химическое соединение с углеродом свариваемого металла и образующие устойчивые карбиды, нерастворимые в железе. Сварка ведется на постоянном и переменном токе I, ко-то1рый в зависимости от диаметра электрода й рекомендуется брать в следующих пределах й=Ъ мм, /=60— 80 А, й=4 мм, /=90 110 А, =5, мм, /=120—150 А. Последующий слой накладывается участками длиной 30—60 мм после остывания предыдущего до 50—60°С. Причем для улучшения обрабатываемости последующий, так называемый отжигающий валик не должен затрагивать основной металл. При сварке изделий большой толщины первые слон выполняют электродами ЦЧ-4, а последующие — элекцродами УОНИ-13/45.  [c.158]

Сталь. Химический состав из.меняет не только структуру, но и свойства стали. Влияние углерода на структуру сплава подробно рассмотрено при изложении диаграммы состояния системы Ре—С, однако следует отметить, что с увеличением содержания углерода повышается твердость, прочность, но снижается пластичность. На механические свойства стали также влияет форма и размер частиц ферритоцементитной смеси. Твердость и прочность тем выше, чем больше дисперсность частиц этой смеси. Если в стали содержится цементит зернистой формы, а не пластинчатый, то она имеет пластичность более высокую при одинаковой твердости. Содержание углерода оказывает влияние на технологические свойства с увеличением содержания углерода в стали улучшается обработка резанием, повышается закаливаемость и чувствительность к старению, перегреву, охлаждению и одновременно ухудшается свариваемость. Большое влияние на свойства стали оказывают различные примеси, которые разделяют на постоянные или обычные, скрытые и случайные.  [c.102]

Магниты из окислов железа и бария. Керамический магнитный материал, состоящий из окислов железа и бария, называют ферроксдюром. Химический состав такого материала может быть представлен формулой ВаО-бРегОз. Этот материал прежде всего интересен тем, что он не содержит дорогих или дефицитных компонентов, таких как никель, кобальт и др. Технология производства такого материала состоит в основном в следующем. Окись железа РегОз смешивают с окисью или солью бария. Смесь в виде прессовки или просто порошка подвергают предварительному спеканию, после чего размалывают до порошкообразного состояния. Полученный после размола порошок прессуют до получения изделий конечной формы, которые затем подвергают спеканию. Двойная термическая обработка применяется для того, чтобы облегчить взаимную диффузию компонентов системы и способствовать получению гексаферрита бария. Именно это соединение обеспечивает высокие магнитные свойства материала. Спекание осуществляют таким образом, чтобы обеспечить диффузию компонентов и вместе с тем избежать значительного роста зерна. Нагрев  [c.440]

Бронза — сплав меди с оловом. Бронзы, в состав которых входят, кроме меди и олова, другие элементы, носят название специальных бронз. В зависимости от химического состава бронзы разделяются на оловянистые, алюминиевые, кремнистые, бе-риллиевые, свинцовистые и другие. Бронза обладает высокой прочностью и стойкостью против истирания, устойчивостью в отношении действия атмосферного воздуха и кислот. Бронза хорошо заполняет литейные формы, дает малую усадку, хорошо поддается механической обработке.  [c.70]


Смотреть страницы где упоминается термин 714—745 — Химическая обработк форм — Составы : [c.72]    [c.59]    [c.281]    [c.134]    [c.328]    [c.25]    [c.76]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.61 , c.62 ]



ПОИСК



714—745 — Химическая обработк

Обработка формованные

Химическая обработка 322, 928942 —



© 2025 Mash-xxl.info Реклама на сайте