Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные и нежесткие молекулы

Уровни энергии. В случае равенства нулю момента количества движения электронов относительно оси молекулы, как это имеет место для всех известных линейных многоатомных молекул в основных состояниях, задача нахождения уровней энергии может решаться так, как если бы момент инерции молекулы относительно ее оси был точно равен нулю, т. е. как если бы мы имели простой ротатор (жесткий или нежесткий) (см. Молекулярные спектры I). Уровни энергии даются той же формулой, что и для двухатомных молекул  [c.26]

Многие из многоатомных молекул являются нелинейными и жесткими. Оставшаяся часть настоящей главы посвящена таким молекулам линейные и нежесткие молекулы рассмотрены в гл. 12. Под термином жесткая молекула в настоящей книге подразумевается молекула, находящаяся в электронном состоянии с единственной равновесной конфигурацией ядер или же в состоянии, в котором барьеры, разделяющие различные равновесные конфигурации на поверхности потенциальной энергии, непреодолимы. Для нежестких молекул (типа аммиака) барьеры по-те1щиальной энергии преодолимы, а туннелирование молекулы между потенциальными минимумами приводит к расщеплениям и сдвигам колебательно-вращательных уровней энергии, наблюдаемым в спектрах.  [c.153]


Используя приведенные выше указания, можно построить группу МС для любой молекулы в данном электронном состоянии, если известны ее равновесная конфигурация и возможность туннельных переходов в этом состоянии. Как будет показано в гл. 11, группа МС изоморфна с точечной группой для любой жесткой нелинейной молекулы. Поэтому мы будем обозначать группы МС символом соответствующей точечной группы с последующим добавлением (М) например, группа МС H2F2 в основном электронном состоянии обозначается символом 2v(M). Далее, поскольку вследствие изоморфизма таблицы характеров этих групп МС такие же, как и для точечных групп, будем обозначать неприводимые представления этих групп МС теми же символами, которые используются для точечных групп. Очень важно помнить, что группа МС и молекулярная точечная группа не идентичны каждый элемент группы МС для нелинейной жесткой молекулы включает произведение операции молекулярной точечной группы и операции молекулярной группы вращения, как будет показано в гл. 11. В приложении А в конце книги приведены таблицы характеров для наиболее распространенных групп МС, в том числе для линейных и нежестких молекул, которые рассматриваются в гл. 12. Группа МС нежесткой молекулы обозначается символом G , где п — порядок группы. Далее в это.м разделе будут рассмотрены корреляция неприводимых представлений группы. VI и группы ППИЯ и применение корреляционного правила при наличии туннельных эффектов в молекулах.  [c.238]

Получены спиновые двойные группы для линейных и нежестких молекул с нечетным числом электронов в случае (а) Гунда. Для электронного Ш-состояния молекулы с симметрией oov в случае (а) Гунда из табл. Б.2.2 получается тип симметрии i/, электронного спинового состояния так как П (g) E J =  [c.410]

Строгие правила отбора (11.146) — (11.149) и правила отбора (11.159 )и (11.160) по спиновому квантовому числу в отсутствие сильных спиновых взаимодействий применимы ко всем молекулам — жестким, нежестким и линейным. Однако правила отбора для вращательных, колебательных и электронных переходов следует пересмотреть, так как разделение переменных в волновой функции нулевого порядка для нежесткой молекулы выполняется несколько иначе. Если отделить вращение от  [c.386]

Группа РМС требуется для раздельной классификации вращательных и вибронных волновых функций нежестких молекул, содержащих коаксиальные внутренние волчки на линейном каркасе, Примерами таких молекул могут служить также перекись  [c.405]

Изложенные выше соображения основаны на предположении о жесткости симметричного волчка. При рассмотрении нежесткого симметричногв волчка необходимо добавить поправочные члены, подобные поправочному члену для линейных молекул (вращательная постоянная D). Согласно Славскому и Деннисону [795], уровни энергии нежесткого симметричного волчка даются выражением  [c.38]


Смотреть страницы где упоминается термин Линейные и нежесткие молекулы : [c.364]    [c.365]    [c.365]    [c.367]    [c.369]    [c.371]    [c.373]    [c.375]    [c.377]    [c.379]    [c.381]    [c.383]    [c.385]    [c.387]    [c.389]    [c.391]    [c.393]    [c.395]    [c.397]    [c.399]    [c.401]    [c.403]    [c.405]    [c.407]    [c.409]    [c.410]    [c.411]    [c.129]    [c.412]    [c.10]    [c.380]    [c.412]    [c.540]    [c.9]   
Смотреть главы в:

Симметрия молекул и молекулярная спектроскопия  -> Линейные и нежесткие молекулы



ПОИСК



Линейные молекулы

Нежесткие молекулы



© 2025 Mash-xxl.info Реклама на сайте