Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные системы с несколькими степенями свободы

ЛИНЕЙНЫЕ СИСТЕМЫ С НЕСКОЛЬКИМИ СТЕПЕНЯМИ СВОБОДЫ  [c.85]

Линейные системы с несколькими степенями свободы  [c.72]

Линейные колебания системы с несколькими степенями свободы  [c.134]

При построении такой модели для двигателя отбрасываются малосущественные деформации, вследствие чего некоторым элементам двигателя приписываются свойства абсолютной жесткости . Это позволяет двигатель свести к идеализированной линейной колебательной системе с несколькими степенями свободы.  [c.199]

Уравнение (III.50) совпадает с уравнением (11.160), полученным выше как условие для определения собственных частот поперечных колебаний той же системы при отсутствии вращения. Следовательно, критические скорости вращения многодискового вала равны частотам свободных колебаний изгиба того же вала, подсчитанным при отсутствии вращения. Этот вывод, являющийся обобщением результата, найденного для вала с одним диском, позволяет для определения со, р воспользоваться всеми способами, указанными при рассмотрении линейных систем с несколькими степенями свободы. Каждой из критических скоростей соответствует особая форма кривой изгиба вала, совпадающая с одной из собственных форм колебаний изгиба.  [c.182]


Резонанс в линейных колебательных системах с несколькими степенями свободы. Колебат. системы с иеск. степенями свободы представляют собой совокупность взаимодействующих осцилляторов. Примером может служить пара колебат. контуров, связанных за счёт взаимной индукции (рис. 4). Вынужденные колебания в такой системе описываются ур-ниями  [c.309]

Потенциальная энергия линейной механической системы с несколькими степенями свободы выражается квадратичной формой перемещений  [c.54]

Был рассмотрен наиболее простой случай (одно уравнение), соответствующий системе с одной степенью свободы или одночленному приближению при решении уравнений малых колебаний стержня с использованием принципа возможных перемещений. Для систем с несколькими степенями свободы выкладки становятся громоздкими. Более подробно решение систем линейных дифференциальных уравнений изложено в работах [6, 10, 14]. Дополнительные сведения о методах решения задач статистической динамики приведены в разделе, посвященном прикладным задачам.  [c.148]

Следует иметь в виду, что системы с одной степенью свободы представляют собой объект, наиболее доступный для исследования возможных колебательных движений при самых разных их нелинейных свойствах. Нелинейные же системы с двумя и большим числом степеней свободы и распределенные системы поддаются последовательному анализу лишь в отдельных частных случаях. Их рассмотрение даже в линейном приближении значительно более сложно, громоздко и не допускает ряда качественных и наглядных приемов, которые возможны для систем с одной степенью свободы. Поэтому изложение материала в гл. 6—12 имеет несколько другой характер, чем в первых главах оно несколько более конспективно, в целях выделения основных физических результатов опускается ряд промежуточных выкладок, особенно при применении изложенных ранее методов анализа. Однако эти различия в изложении отдельных разделов, по нашему мнению, вполне оправдываются спецификой рассматриваемых вопросов, тем более, что значительная часть материала, приведенного в книге, ранее не излагалась в учебных пособиях по теории колебаний.  [c.13]

Уравнение (20.20) называется дифференциальным уравнением малых колебаний системы около положения устойчивого равновесия. Для получения этого уравнения не обязательно прибегать к уравнениям Лагранжа второго рода — можно пользоваться любыми другими методами, например, общими теоремами динамики. Важно, чтобы в результате получилось линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Однако изложенный здесь метод является общим, одинаково пригодным как для простых, так и для сложных систем с несколькими степенями свободы.  [c.466]

Условия ЗАДАЧ. Механическая система с двумя степенями свободы состоит из двух однородных цилиндров и нескольких линейно упругих пружин с одинаковой жесткостью с. Цилиндры катаются без проскальзывания и сопротивления по горизонтальной поверхности, пружины в положении равновесия не имеют предварительного напряжения. Массой пружин пренебречь. Определить частоты собственных колебаний системы.  [c.342]


При расчете прямоугольных плит на поперечную нагрузку Н. Н. Попов и Б. С. Расторгуев (1964) предполагали, что после достижения моментом в направлении меньшего пролета в середине плиты предельной величины мгновенно образуются линейные шарниры пластичности, очертание которых соответствует обычной схеме конверт , которая применяется при определении верхней границы несущей способности при статическом расчете (углы наклона шарниров в углах принимались равными 45°). Такая, схема, разумеется, весьма приближенна, но она несколько выигрывает по сравнению с полным пренебрежением упругой работой плиты, принятым в жестко-пластическом анализе. Таким образом, плита в пластической стадии представлялась как система с одной степенью свободы. При составлении уравнений движения в пластической стадии работы использовалось уравнение работ. Очевидно, что такой путь возможен лишь при жестком задании механизма деформирования. При интегрировании уравнения движения в пластической стадии начальными условиями служило равенство количества движений в конце упругой и в начале пластической стадии.  [c.321]

В линейных системах вынужденные колебания от гармонической возмущающей силы происходят с частотой или периодом последней. В нелинейных системах вынужденные колебания от гармонической возмущающей силы могут происходить не только с периодом возмущающей силы, но и с периодами, равными целым кратным последнего. В связи с этим в данной нелинейной системе с одной степенью свободы, на которую действует только одна гармоническая возмущающая сила, возможны несколько резонансных режимов.  [c.472]

В предыдущей главе мы познакомились с явлением резонанса в его простейшей форме — внешним резонансом в линейном осцилляторе. Если система не столь проста, например, обладает несколькими степенями свободы, возможен другой эффект, такой, как внутренний резонанс — резонанс между отдельными подсистемами. Как мы увидим, в результате внутреннего резонанса отдельные подсистемы (их называют парциальными) обмениваются энергией друг с другом, т. е. это уже взаимодействие подсистем. Очевидно, что внешний резонанс можно рассматривать как частный случай внутреннего, если энергию одной из подсистем считать бесконечной. При этом будет уже не взаимодействие, а просто воздействие одной подсистемы на другую.  [c.38]

Численное интегрирование полученной системы уравнений не представляет затруднений, тем более, что эта система распадается на две независимые системы, описывающие поперечные и продольные колебания упругой шарнирной цепи. Как видно из полученных уравнений, нелинейность существенным образом влияет на амплитуды и частоты поперечных колебаний, в то время как амплитуды продольных колебаний такого влияния не испытывают. Поэтому в дальнейшем уравнения, описывающие продольные колебания масс цепочки, могут быть проинтегрированы самостоятельно в линейной постановке. Затем, подставляя решение для в систему уравнений, описывающих поперечные колебания масс цепи, приходим к задаче о воздействии на нелинейную колебательную систему со многими степенями свободы возмущающей силы с несколькими частотами. Поскольку правые части (102) не зависят от р,, ф , то первое и третье уравнения этой системы удобны для исследования амплитуд М,-, NI-  [c.41]

В линейной системе с несколькими степенями свободы, собственные колебания к-рой могут происходить с различными частотами (т. н. собственными частотами, см. Нормальные колебания), Р. наступает при совпадении частоты гармонич. внешнего воздейст-  [c.302]

В этом параграфе мы сформулируем несколько теорем относительно понижения порядка для трех различных типичных линейных интегралов и соответствующих циклических переменных. Далее мы сосредоточимся на обратной процедуре, связанной с перенесением результатов, касающихся приведенной системы, на общие уравнения. При помощи этой схемы из интегрируемых семейств для приведенной системы (с двумя степенями свободы) можно получить интегрируемые случаи более общих уравнений движения твердого тела в потенциальном поле (см. 4 гл. 3), т. е. для системы с тремя степенями свободы. Кроме того, на этом пути удается понять смысл различных добавок, носящих сингулярный характер, типа а = onst  [c.220]

Пример 4. КОЛЕБАНИЯ НИТИ С БУСИНКАМИ. Как отмечают в своей книге Ф. Р. Гантмахер и М. Г. Крейн [14, с. 142—143], этой задаче принадлежит совершенно особая роль в истории механики и математики. Пожалуй, она была первой задачей на исследование малых колебаний системы с п степенями свободы. В связи с ней Ж. Даламбер предложил свой метод интегрирования системы линейных дифференциальных уравнений с постоянными коэффициентами. Отправляясь от нее, Даниил Бернулли высказал свое знаменитое предположение, что решение задачи о свободном колебании струны можно представить в виде тригонометрического ряда, что вызвало между Л. Эйлером, Ж. Даламбером, Д. Бернулли и др. дискуссию о природе тригонометрических рядов, затянувшуюся на несколько десятилетий. Впоследствии Ж. Л 1гранж показал более строго, как можно предельным переходом из решения задачи о колебаниях нити с бусинками получить решение задачи о колебании струны. Наконец, этой задачей (и аналогичной задачей из теории теплопроводности) руководствовался III. Штурм в своих замечательных исследованиях по высшей алгебре и теории дифференциальных уравнений .  [c.126]


В работах школы советских ученых Л. И. Мандельштама и Н. Д. Па-палекси [10—12], А. А. Андронова и М. А. Леонтовича [13],Т. С. Горелика [14], С. М. Рытова [15], Э. М. Рубчинского [16], В. А. Лазарева [17] и других изучались вопросы как линейной, так и нелинейной теории параметрически возбуждаемых колебаний в системах с одной и несколькими степенями свободы. Исследовались также вынужденные колебания в контуре с переменной Индуктивностью вида L — Lo i. + q sin 2м/), находящегося под действием э.д.с. Е — Eq sin (-ог -f ili), т. е. случай, когда частота М0ДУЛЯ1ЩИ параметра кратна частоте сигнала,— так называемый вырожденный или синхронный режим.  [c.6]

Можно изучить колебания и в системах с несколькими электромагнитами, а также в случае многих механических степеней свободы [15]. О расчете электромагнитных вибровозбудителей см. в т. 4. При существенной магнитной нелинейности (насыщении стали) задача решается аналогично, только усредняются соотношения типа (30). В этом случае возмо/кны механические колебания с частотой сети под действием электромагнитов, имеющих только одну обмотку, подключенную непосредственно к сети (см. также т. 4). В магиитно-линейном случае для таких магнитов ((. = О, устойчивым режимам соответствует j = О и колебания имеют частоту 2(о [см. (54)]. Тот же эффект —механические колебания частоты ш при питании только переменным током —можно получить при ударах якоря о преграду [2].  [c.344]

Одним из элементов анализа аэроупругости вертолета, который еще не рассматривался, является численное интегрирование уравнений движения. Дифференциальные уравнения, подлежащие решению, могут быть записаны в форме Р==/(Р, Р, iti), где р представляет степени свободы системы, а ij) — безразмерное время. Нескольким степеням свободы соответствует система уравнений. В случае линейных уравнений и небольшого количества степеней свободы возможно аналитическое решение задачи. В анализе аэроупругости часто присутствуют нелинейные аэродинамические, упругие и инерционные силы, что делает необходимым численное решение. Если заданы значения р и р при ij) = ijJrt (из чего может быть найдена производная р = /), то задача заключается в интегрировании уравнений с временным шагом Aij) для определения значений р и р при = il)n + А Ф-  [c.693]

Во многих статьях и монографиях задачи о прохождении через резонанс рассматривались в предположении, что скорость вращения валов, несущих неуравновешенные массы, в процессе пуска или остановки машины изменяется по линейному закону, т. е. валы вращаются равномерно-ускоренно или равномерно-замедленно [4, 7, 9, 11, 12]. В указанных работах установлен ряд важных закономерностей процесса прохождения через резонанс, в частности, показано, что максимум амплитуды (размаха) колебаний достигается несколько позднее того момента, когда частота вращения становится равной соответствующей собственной частоте, а также, что указанный максимум убывает с ростом ускорения вала. Однако полученные в упомянутых работах количественные (а иногда н качественные) результаты не всегда применимы к вибрационным машинам, характеризующимся относительно большими массами дебалансов вибровозбудителей. В таких машинах вращение вала вблизи резонансных частот уже нельзя полагать равномерно-ускоренным или рав-номерно-замедленным здесь происходит весьма интенсивная и существешю зависящая от настройки перекачка энергии от вращающегося вала в колебательную систему. Поэтому ниже приведены результаты, полученные при более полном решении задачи, когда изменение частоты вращения дебалансного вала не считается равномерным, а учитывается степень свободы системы, соответствующая вращательной координате (углу поворота вала).  [c.180]

Озможных линейно независимых полей деформаций в конструкции, а значит, и число линейно независимых полей смещений ее точек (число степеней свободы деформируемой конструкции). Таким образом, размерность т равна числу обобщенных перемещений, с помощью которых может быть определено любое деформированное состояние конструкции. А отсюда следует (согласно принципу возможных перемещений [41 1), что число независимых уравнений равновесия для нее также равно т. Так, например, рассмотренная выше простейшая система (см. рис. 7.1) имеет п = 2 (число стержней), k = 1 (степень статической неопределимости), откуда т = 2 — 1 = 1. Это означает, что деформация определяется одним обобщенным перемещением — поворотом жесткого бруса соответственно для определения усилий в стержнях имеется лишь одно уравнение равновесия —сумма моментов вокруг жестко закрепленной точки бруса. В другой, несколько более сложной ферме (рис. 7.4) имеем /г = 9, /г = 2, /п = 9 —2 = 7. Соответственно — семь обобщенных перемещений (по две проекции для перемещений каждого из незакрепленных узлов и одна для узла, направление возможного перемещения которого определено), столько же независимых внешних нагрузок (вариантов нагружения) и независимых условий равновесия.  [c.150]

Если же начальное возмущение не локализовано в пространстве, а, например, периодическое, характер его эволюции будет совершенно иной — нарастающие в результате модуляционной неустойчивости синусоидальные волны модуляции будут нелинейным образом искажаться на периоде волны образуются одни или несколько солитонов, но затем солитоны сглаживаются, и волна вновь приходит в начальное состояние, потом все повторяется и т. д. Явление возвращаемости наблюдалось экспериментально и для обсуждаемого нами примера — гравитационных волн на глубокой воде [11, 17, 45]. Соответствующие численные результаты представлены на рис. 20.3 [11, 18, 19, 45]. На рис. 20.4 показаны результаты физических экспериментов с нелинейными ЬС-цепочками, которые приближенно описываются уравнениями типа КдВ с кубичной нелинейностью. При синусоидальном возбуждении цепочки на границе наблюдалась почти полная возвращаемость вдоль цепочки синусоида трансформировалась в периодическую последовательность солитонов, т. е. возбуждалось большое число осцилляторов-гармоник, затем солитоны вновь превращались в синусоиду — все гармоники возвращали энергию первой гармонике. Впервые этот эффект в численном эксперименте наблюдали Ферми, Паста и Улам [20]. Они пытались подтвердить гипотезу о том, что в системах с очень большим числом степеней свободы наличия даже слабой нелинейности достаточно, чтобы энергия, запасенная в отдельных степенях свободы (модах), равнораспределилась по всем модам (перемешивание) и таким образом установилось бы термодинамическое равновесие (тер-мализация). Ферми, Паста и Улам экспериментировали с моделями нелинейных линейных цепочек из большого числа частиц и термализации  [c.420]

Исследование системы уравнений (VIII.25) показывает, что для системы 5 с более чем двумя степенями свободы зависящие от времени решения (О будут, вообще говоря выражаться суперпозицией нескольких убывающих экспонент. Совсем не очевидно, что линейная комбинация таких экспонент (VIII.27) будет выражаться одной экспонентой, как обычно подразумевают при определении времени спин-решеточной релаксации в уравнении  [c.257]


Смотреть страницы где упоминается термин Линейные системы с несколькими степенями свободы : [c.184]    [c.455]    [c.179]    [c.19]    [c.339]    [c.264]   
Смотреть главы в:

Основы прикладной теории колебаний и удара Изд.3  -> Линейные системы с несколькими степенями свободы

Основы прикладной теории колебаний и удара Изд.3  -> Линейные системы с несколькими степенями свободы

Введение в теорию механических колебаний  -> Линейные системы с несколькими степенями свободы

Введение в теорию механических колебаний  -> Линейные системы с несколькими степенями свободы



ПОИСК



Линейные системы с is степени свободы

Система линейная

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте