Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Случай, приводящийся к квадратурам)

Таким образом, рассматриваемый случай приводится к двум связанным и последовательно решаемым задачам классической плоской теории упругости однородного изотропного поля. Поэтому многие краевые задачи для системы уравнений (5.13) при помощи предложенного подхода можно решить в квадратурах. Рассмотрим плосконапряженное состояние пластин кусочно-постоянной толщины.  [c.263]

Случай Ковалевской. В п. 24 уже говорилось, что интегрирование уравнений (34 ), (35 ) движения тяжелого твердого тела, закрепленного в одной своей точке, приводится к квадратурам всякий раз, когда удается определить еще один интеграл, кроме классических интегралов живых сил и момента количеств движения.  [c.165]


Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]

Все сказанное относительно (14.12.3) относится и к системе (14.14.3) она составляется из уравнений с переменными коэффициентами, но для поверхности вращения второго порядка и для случая, когда меридиан представляет собой параболу вида (14.11.11), система (14.14.3) приводится к уравнениям с постоянными коэффициентами. При п = О и = 1 решение системы (14.14.1) можно выразить через квадратуры.  [c.208]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]


Оказывается, что интеграл типа Лагранжа существует для почти всех задач динамики твердого тела, представляющих теоретический интерес, а его наличие приводит к интегрируемым случаям, как правило, имеющим важное прикладное значение. Например, аналог случая Лагранжа для уравнений Кирхгофа был указан самим Кирхгофом, который также проинтегрировал его и указал наиболее простые движения. Для уравнений Пуанкаре-Жуковского (на во(4)) аналог случая Лагранжа указал Пуанкаре для обоснования своих теоретических выводов относительно прецессии оси вращения Земли. В двух указанных случаях, как и в классической задаче Лагранжа, можно получить явную (эллиптическую) квадратуру для угла нутации в, определяемую гироскопической функцией, а также использовать все результаты качественного анализа движения, приведенные нами в 3 гл. 2.  [c.232]

В некоторых случаях дифференциальное уравнение (0.13) удается решить аналитически в замкнутой форме в частности, к квадратурам приводится случай, когда выражение /(д, д) не содержит д, и переменные в (0.13) разделяются. В общем случае для интегрирования урав-  [c.20]

Анализ этого случая приводит, по крайней мере формально, к бесконечному итерациональному процессу квадратур. Мы покажем теперь, что в этом процессе каждая квадратура в отдельности приводит к сложным и топким вопросам теории так называемых малых знаменателей .  [c.494]

Переход от третьего приближения к приближению четвертого порядка Т 4 ((f) и тем более к приближениям более высоких порядков по рекуррентной формуле (2. 18) приводит к сложным квадратурам. Поэтому представляется целесообразным использование методики чрсленного интегрирования, изложенной в 5. С этой целью промежуток [ — и, л] выберем в качестве базового и разобьем его на любое число п = 2т равных частичных промежутков P. +il i=0, 1, 2,. . га — 1. Пусть, например, п=2т= = 16 (т=8). Случай большего числа точек деления для уяснения сущности метода принципиальной роли не играет и будет связан лишь с увеличением числа производимых и притом аналогичных операций.  [c.80]

D, а В преобразовании Крылова — Боголюбова вида (3.60) но будет отсутствовать. Чтобы преобразование Крылова — Боголюбова давало асимптотические представления для решения нервоначальной системы (62), необходимо, как неоднократно указывалось раньше, решить усредненную систему (70). Моиаю доказать [8, 124], что усредненные по Делоне — Хиллу уравнения плоской ограниченной круговой задачи трех тел интегрируемы в квадратурах, т. е. известна полная система ее первых интегралов (система уравнений имеет четвертый порядок). То же самое можно утверждать и относительно усредненных но Фату и Моисееву уравнений плоской ограниченной круговой задачи трех тел. Что касается пространственного случая ограниченной круговой задачи трех тел, то известно, что только схема Гаусса (см. (35)) приводит к интегрируемой задаче. Первые интегралы усредненных уравнений можно найти в [7, 8, 124].  [c.148]

В последнее время появились исследования, в которых учитываются малые нелинейные члены, обусловленные влиянием инерции подвеса. Первые работы, в которых достаточно точно учитывалась масса кардано-вых колец, связаны с именем Е. Л, Николаи. Наиболее важной является его статья О движении уравновешенного гироскопа в кардановом подвесе (1939). В рассматриваемой задаче имеются три первых интеграла (интеграл кинетического момента всей гиросистемы относительно внешней оси, интеграл кинетического момента для ротора относительно его оси вращения и интеграл энергии). Интегрирование уравнений движения, взятых в форме первых интегралов, приводит к гиперэллиптическим квадратурам. Поэтому, не проводя интегрирования, Е. Л. Николаи подробно исследует возможные траектории конца оси гироскопа в зависимости от параметров системы и начальных условий. Им впервые указано на возможность ухода оси гироскопа. Далее получены условия регулярной прецессии гироскопа и исследуется случай быстро вращающегося гироскопа. Особенно подробно рассматривается вопрос устойчивости движения в случае совпадения или близкого расположения оси гироскопа с осью вращения внешнего кольца. Показано, что в этих случаях значительно снижается степень устойчивости.  [c.250]

В своей работе [256] А. Пуанкаре привел вполне современный вывод уравнений (2.3), (2.8), опираясь на развитый им формализм общих уравнений движения на группах Ли. Он также явно указал сведение к эллиптическим квадратурам для осесимметричного случая и рассмотрел устойчивость регулярных прецессий. По этому поводу интересна его полемика с В. Кельвином относительно поведения частоты и устойчивости прецессии тела при наличии жидкой полости. При этом Пуанкаре использует систему (2.7) ДЛЯ описания движения Земли, представляющей собой твердую оболочку (мантию) и жидкое ядро. В дальнейшем эту модель изучает также В. А. Стеклов, приводя в работе [273] открытые им случаи интегрируемости.  [c.182]

Остается выяснить, почему квадратура Гаусса приводит к описанному эффекту уменьшения К- Очевидно, К будет уменьшаться, если уменьшается каждая матрица элемента ке. Строгое доказательство для одномерного случая можно найти в работе Айронса и Раззака [А7], где (о ) разлагается в ряд по полиномам Лежандра. Энергия деформации на отрезке [—1,1] имеет вид  [c.121]



Смотреть страницы где упоминается термин Случай, приводящийся к квадратурам) : [c.694]    [c.216]    [c.548]    [c.4]    [c.317]    [c.23]    [c.169]    [c.4]   
Смотреть главы в:

Основы динамики машинных агрегатов  -> Случай, приводящийся к квадратурам)



ПОИСК



Квадратура



© 2025 Mash-xxl.info Реклама на сайте