Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы для изготовления деталей узлов трения

Стали и цветные сплавы - традиционно и широко применяемые материалы для изготовления деталей узлов трения самого различного назначения. Упрочняющая модификация этих материалов методами термической обработки применяется очень давно, хорошо отработана и широко освещена в научных и учебных изданиях.  [c.214]

Материалы для изготовления деталей узлов трения  [c.200]

Пористые антифрикционные материалы используют для изготовления деталей узлов трения методом прессования с последующим спеканием из порошков на железной и медной основе. В качестве обязательных добавок к ним применяют порошки самосмазы-вающихся материалов графита, дисульфида молибдена, нитрида бора и др.  [c.26]


В Японии, ФРГ, ГДР и других странах также нашли применение материалы из наполненного фторопласта-4 для изготовления деталей узлов трения поршневых и других машин.  [c.122]

Композиционный износостойкий материал широко применяют для изготовления деталей узлов трения нефтепромыслового оборудования. Это один из немногих антифрикционных материалов, способных работать в одноименной паре трения (композиционный материал по композиционному материалу) при высоких удельных нагрузках (до 1,2 МПа) и скоростях скольжения до 30 м/с.  [c.117]

Детали, изготовленные из КПМ, дают значительную экономию в сфере эксплуатации, обеспечивая высокие эксплуатационные свойства. Например, антифрикционные спеченные материалы широко используют для производства заготовок деталей узлов трения (подшипников скольжения, колец, торцовых уплотнений, шайб, подпятников, поршневых колец и др.) различных механизмов и машин. Введение в состав антифрикционных материалов веществ, играющих роль твердой смазки, присадок, повышающих прочностные свойства материала, а также наличие в материа./1е подшипника ос-  [c.187]

Указано применение этих материалов для изготовления различных деталей узлов трения поршневых колец, уплотнений, подшипников скольжения.  [c.2]

В качестве антифрикционных используют чугуны (отливки) (ГОСТ 1585-85). Они предназначены для изготовления деталей, работающих в узлах трения со смазочным материалом. Стандарт определяет марки антифрикционных чугунов, их химический состав, характеристики, назначение, форму, размер, распределение графита, дисперсность перлита, характер распределения фосфидной эвтектики, твердость и предельные режимы эксплуатации деталей из этих чугунов. Основой их является железо, постоянные компоненты углерод (2,2-6,0 %), кремний (0,5-4,0 %), марганец (0,2-12,5 %). Допускаются примеси фосфор (0,1-1 %), сера (0,03-0,2 %).  [c.255]

Углеродные (углеграфитные) антифрикционные материалы предназначены для изготовления деталей (подшипников скольжения, уплотнительных устройств, поршневых колец и др.), работающих в узлах трения без смазочного материала при температурах от -200 до +2000 °С и скоростях скольжения до 100 м/с, а также в агрессивных средах. Свойства их зависят от химического состава и способа получения плотность 1,4-3,2 г/см , предел прочности при сжатии 60-270 МПа (600-2700 кгс/см ), при изгибе — 22-120 МПа (220-1200 кгс/см ), модуль упругости при сжатии 600-1700 МПа (6000-17 ООО кгс/см ), твердость по Шору 42-75, допустимая рабочая температура в окислительной среде 180-450 °С, в восстановительной и нейтральной средах — 200-1500 °С. При работе в вакууме и среде осушенных газов свойства этих материалов ухудшаются. К углеродным антифрикционным материалам относятся углеродные обожженные материалы (ТУ 48-20-4-72) марок АО-1500 и АО-600 (цифра означает усилие кгс/см прессования, при котором получен материал) после пропитки сплавом С05, содержащим 95 % свинца и 5 % олова или баббитом Б83 этим материалам присваивают марки АО-1500-С05, АО-600-С05, АО-1500-Б83 и АО-600-Б83  [c.256]

Применение эластомеров для изготовления деталей уплотнительных. узлов создает условия для полной пассивности абразивных частиц. Контакт эластичных пористых материалов с поверхностью стальной детали весьма специфичен. В непосредственное соприкосновение с деталью вступают тонкие стенки ячеек, создающие в контакте незначительные напряжения. При попадании в зону герметизации абразивной частицы на нее действуют столь малые силы, что возможность разрушения поверхностного слоя контртела практически исключается. Под действием сил трения эти частицы как бы поглощаются полимером и не оказывают абразивного воздействия на контактируемую поверхность.  [c.20]


При конструировании деталей из графитовых материалов, предназначенных для узлов трения, необходимо учитывать две основные особенности этих материалов — низкие прочностные характеристики и низкий коэффициент линейного расширения. Детали, изготовленные из графита, должны работать на сжатие-Работа графитовых материалов на растяжение недопустима.  [c.18]

Выбор деталей, изготовленных из полимеров, должен базироваться на глубоких исследовательских и конструкторских проработках. Во многих случаях деталь из пластмассы не должна повторять форму металлической, а конструироваться с учетом специфики полимерного материала. Сам же материал должен изготовляться с учетом конструкции деталей и условий ее работы — путем подбора рецептуры (стабилизаторы, пластификаторы, наполнители и др.) и создания необходимой микроструктуры. Для узлов трения наиболее перспективны комбинации полимеров с другими материалами.  [c.25]

Материалы на основе фторопласта. Фторопласт занимает особое место среди других полимеров, его нельзя отнести ни к термопластам, ни к реактопластам, так как ему присущи свойства обеих групп. Он отличается самым низким и стабильным коэффициентом трения (0,04) при трении по стали и лучшими смазывающими свойствами среди полимеров. Однако твердост , чистого фторопласта невелика, что приводит к значительному деформированию поверхностных слоев при контактном взаимодействии и к интенсивному изнашиванию при трении. Поэтому для изготовления деталей узлов трения чистый фторопласт не применяют, а исгюльзуют ком[юзиционные материалы на основе фторопласта. В табл. 1.8 приведены физико-механические и триботехнические свойства ПСМ на основе фторопласта-4 [13].  [c.28]

В главе 1 приведены сведения о физико-механических и триботехнических свойствах различных полимерных композиционных материалов, применяемых для изготовления деталей узлов трения (трибосис-тем). Эти материалы представляют собой полимеры (фторопласт-4, полиэтилен, полиамид, поликарбонат и др.), модифицированные введением различных наполнителей. В главе 6 на примере ПТФЭ (фторопласт-4) подробно рассмотрено влияние наполнителей-модификатора на параметры надмолекулярной структуры полимера, которое в совокупности с физическими свойствами наполнителей определяет свойства модифицированного полимерного материала.  [c.231]

Антифрикционные спеченные материалы используются для изготовления деталей узлов трения (подшипников скольжения, распорных втулок, колец, торцевых уплотнений, шайб, подпятников) различных машин и механизмов. Ими заменяют дорогостоящие цветные подшипниковые сплавы (баббиты, бронзы, латуни), антифрикционные чугуны и стали, подшипники качения, что позволяет получить значительный экономический эффект благодаря экономии цветных металлов, снижению трудоемкости изготовления деталей, повышению производительности труда, сокращению расхода металла в стружку, высвобождению станочного парка, квалифицированных рабочих и производственных площадей. Основным преимуществом антифрикционных спеченных материалов, изготовленных методом порошковой металлургии, по сравнению с другими материалами аналогичного назначения является их более высокая надежность и длительный срок службы (в 1,5—10 раз), особенно в условиях ограниченной подачи смазки. Этому способствуют поры, образующиеся в материале при его изготовлении, которые пропитывают маслом. Масловпитываемость материалов пористостью 17—25% находится в пределах 1,0—3,0%.  [c.42]

С экономической точки зрения прт -меняемые материалы для изготовления деталей, а также смазочные материалы должны быть недефицитными и недорогостояшими. Технолог. я изготовления деталей из материал ,>8 должна быть достаточно простой. Замена смазочного материала. при эксплуатации узлов трения долж. а производиться как можно реже не производиться совсем.  [c.65]

В условиях трения и изнашивания, сопровождаемых большими удельными динамическими нафузками, высокой износостойкостью отличается высокомарганцовистая сталь марки Г13. Эта сталь имеет в своем составе 1,0-1,4% углерода и 12,7-14% марганца, обладает аустенитной структурой и относительно невысокой твердостью (200-250 НВ). В процессе эксплуатации, когда на деталь узла трения действуют высокие нафузки, которые вызывают в материале деформацию и напряжения, превосходящие предел текучести, происходит интенсивное наклепывание стали Г13 и увеличение твердости и износостойкости. После наклепа сталь сохраняет высокую ударную вязкость. Благодаря этим свойствам сталь Г13 широко используется для изготовления корпусов шаровых мельниц, щек камнедробилок, крестовин рельсов, гусеничных траков, козырьков землечерпалок и т.д. Необходимо отметить, что склонность к интенсивному наклепу является характерной особенностью сталей аустенитного класса, поэтому их широко ис1юльзуют для изготовления деталей, работающих в условиях трения с динамическими, ударными воздействиями сопряженных деталей или рабочего тела (среды).  [c.18]

Материалы на осноне полиимидов. Полиимиды отличаются высокой термической и термоокислительной устойчивостью. Они начинают разлагаться на воздухе только в области температур 350-450°С, а в вакууме или инертной среде при 500°С. Полиимиды относятся к самым радиационностойким материалам, что в сочетании с малой летучестью в вакууме делает их перспективными для применения в узлах трения, работающих в вакууме. Изделия из полиимидов могут длительно эксплуатироваться при температуре 200-260°С. Например, полиимид ПМ-69 сохраняет 90% прочности при изгибе после 500 ч работы при 250°С и после 100 ч работы при 300°С. Ценным свойством полиимидов является высокое сопротивление ползучести, особенно при высоких температурах. Возможность применения полиимидов для изготовления деталей высокой точности обеспечивается их малой усадкой (0,7-1,0%) при прессовании и спекании и небольшим (0,2-0,3%) водопоглощением.  [c.31]


Текстолит по способу изготовления подобен гетинаксу, но отличается от последнего наполнителем, в качестве которого нрнме-няют текстильную ткань штапельное полотно, бязь, миткаль н др. Характеризуется он хорошимп антифрикционными свойствами, большими удельной ударной вязкостью, прочностью на сжатие и более высокой водостойкостью, чем гетинакс является хорошим электроизоляционным материалом. Различают текстолиты 1) автотракторный (ВТУ МХП М 3833—53) 2) гибкий марки МА (ТУ МХП 488— 50), марки МГ (ТУ МХП 1518—50) 3) листовой элект-]ютехпических марок А, В, ВЧ, Г, СТ (ГОСТ 2910—67) 4) металлургический (ТУ ГХК М-827 —60) 5) поделочный (ГОСТ 5—52 ). Применяют текстолит для изготовления деталей, работающих в узлах трения, зубчатых колес и др. Хорошо обрабатывается на металлорежущих станках, поддается склеиванию казеиновыми, карбамидными и другими клеями.  [c.312]

Материалы трущейся пары торцового уплотнения. Они должны удовлетворять комплексу требований, обеспечивая долговечность и износостойкость в заданном режиме работы и применяемой среде. Эти материалы должны быть совместимы с рабочей средой, обладать высокой коррозионной стойкостью, достаточной прочностью, хорошими антифрикционными свойствами (стабильный низкий коэффициент трения, отсутствие склонности к заеданию и схватыванию), высокой термостойкостью и сопротивляемостью тепловому удару, стабильностью размеров в течение всего срока эксплуатации. ( ля малоагрессивных сред с хорошими смазывающими способностями могут быть применены различные материалы, и их выбор определяется в основном соображениями надежности и долговечности работы уплотнения, а также технологии, себестоимости и обеспеченности производства сырьем. Чем агрессивнее среда и выше требования к уплотнению, тем уже круг материалов, из которых можно произвести их выбор. В этом случае главным условием выбора материала является его совместимость со средой. Например, при изготовлении торцовых уплотнений на заводах-из-готовителях объемных гидроприводов целесообразно применить пару бронза — сталь, принятую для основного узла трения гидромашин, так как материалы, технология и оборудование для изготовления деталей уплотнений и деталей гидромашин будут оди-наковы В химических машинах и специальных агрегатах требуются уплотнения для различных агрессивных сред. Их изготовление производится на специализированных заводах, приспособленных обрабатывать дефицитные и трудоемкие материалы. Наиболее часто применяемые для различных сред материалы указаны в табл. 16.  [c.181]

Значительная окалиностойкость твердых сплавов на основе карбида титана делает их перспективными материалами для изготовления кон-струкщ10нных деталей (подшиш1иков, уплотнений и т.д.) узлов трения, работающих при температурах до 1100 °С. Твердые сплавы на основе карбида вольфрама к зксплуатации при таких высоких температурах непригодны.  [c.97]

Характеристики неметаллических материалов, наиболее часто исполь вушык в машиностроении. Текстолит по способу изготовления подобен гетинаксу, но отличается от последнего наполнителем, в качестве которого применяют текстильную ткань. Он имеет хорошие антифрикционные свойства, обладает большой удельной ударной вязкостью, прочностью на сжатие. Является хорошим электроизоляционным материалом. Применяют текстолит для изготовления деталей, работающих в узлах трения, хорошо обрабатывается на металлорежущем оборудовании — фрезерованием, точением, сверлением поддаются склеиванию казеиновыми и другими клеями.  [c.195]

Твердые смазочные покрытия с керамическими связуюи ими антифрикционные пластики. Сходны с рассмотренными выше покрытиями. В качестве связующих взамен смол используются термически стабильные керамические материалы, органические пластмассы с хорошими антикоррозионными и противоизносными характеристиками, их можно наносить на трущиеся поверхности или использовать для изготовления деталей и узлов трения. Чаще всего используется политетрафторэтилен.  [c.245]

Наиболее широко эти материалы применяют для изготовления деталей подшипников и узлов трения (рис. 93), что обусловлено их высокой даносостойкостью, малым коэффициентом трения и надежностью в эксплуатации. Большое количество пор (15—30% и более), в которых хорошо  [c.322]

I амосмазывающиеся антифрикционные материалы применя- ются для изготовления подшипников скольжения, элементов уплотнений, поршневых колец и других деталей, предназначенных для работы Б условиях сухого трения. Применение в узлах трения в качестве смазки масел в некоторых случаях невозможно.  [c.109]

Для выявления работоспособности деталей в узлах трени я без смазки был изготовлен и испытан ряд деталей из поликарбоната и полиформальдегида (сухари и вкладыши). Для изготовления сухарей и вкладышей методом литья под давлением изготавливалась одногнездная прессформа со съемными взаимозаменяю-щимися материалами, рабочие поверхности которых хромировались.  [c.286]

Применяют графитопластики для изготовления узлов трения (вкладышей, втулок и др.), скользящих электроконтактов, деталей и изделий с высокой химической стойкостью, уплотнительных деталей в химическом оборудовании, теплообменной аппаратуры и других изделий в машиностроении, электротехнике, химической и нефтехимической отраслях, термохимических производствах и т. д. Графитопластики на основе фенолформальдегидных и некоторых других термостойких смол с высоким выходом кокса используются для получения графитированных материалов и изделий путем проведения пиролиза, карбонизации и графитации при высоких температурах. При введении в исходный материал оксидов металлов при высокотемпературной обработке изготавливаются карбидные материалы. Соотношения между графитовым наполнителем, оксидом металла и карбони-зующимся связующим должны быть такими, чтобы после формования и высокотемпературной термообработки изделия содержание углерода из углеродных компонентов было достаточным для восстановления всего оксида металла до карбида. В зависимости от условий получения углеграфитовые и карбидные материалы могут иметь различную пористость.  [c.782]

В первую очередь полимерные материалы следует применять для тех деталей или узлов продовольственных машин и приборов, в которых использование других материалов ока зывается невозможным. Например, лрименение фторопластов и фторкаучуков в агреосивных средах ори высокой температуре использование электроизоляционных свойств полимеров для изготовления датчиков приборов применение полиамидов, полиформальдегида и фторопластов (преимущественно наполненных) и других полимеров с хор оши ми антифрикционными свойствами и покрытий из них в узлах трения при затруднительности или невозможности смазки использование покрытий из суспензий фторопластов, кремнийорга-ничеоких жидкостей и лаков для снижения прилипания Пищевых продуктов к рабочим поверхностям оборудования.  [c.191]

Отработка конструкции гидродинамического подшипника герметичного ГЦН заключается в проверке работоспособности выбранных материалов пары трения в конкретной конструкции подшипника при реальных режимах по температуре, давлению, подаче смазывающей воды, нагрузкам и частоте вращения. Необходимо, чтобы испытательный стенд для отработки конструкции подшипников имитировал условия их размещения и крепления в натурной конструкции ГЦН, а также позволял исследовать влияние на работоспособность подшипников несоосности и перекосов, вызываемых неточностью изготовления узлов и деталей насоса. На рис. 7.12 представлена схема испытательного стенда для отработки радиального и осевого подшипников герметичного ГЦН с вертикальным расположением вала, отвечающая указанным требованиям. В герметичный насос вместо штатного нижнего радиального подшипника ставится испытываемый радиальный подшипник 2, а на конец вала ротора вместо рабочего колеса крепится вращающаяся часть испытываемого осевого подшипника 5. Невращающаяся часть осевого подшипника крепится на конце качающегося рычага 7, через который с помощью груза можно создавать требуемое усилие на осевом подшипнике. Насос с испытываемыми подшипниками соединяется с автоклавом 6, образуя единую герметичную полость. Автоклав снабжен электронагревателем. С помощью стендового насоса создается циркуляция через  [c.227]


Средствами улучшения эксплуатационных качеств машин и станков служат закалка направляющих поверхностей чугунных станин, повышающая их износостойкость установка накладок и заливка пластмассой поверхностей трения, удлиняющие срок нормальной эксплуатации деталей и сокращающие время их восстановления при ремонте замена зубчатых колес, валов и других быстроизнашиваю-щихся деталей новыми, изготовленными из более прочных, износостойких, термообработанных материалов замена шпоночных соединений шлицевыми, где это целесообразно установка упорных подшипников качения для облегчения рабочих усилий при управлении механизмами, в которых осевые усилия воспринимаются упорными кольцами перенос электродвигателей, установленных на полу, на площадки, монтируемые на машине, что облегчает перемонтаж машин. Часто для того, чтобы удлинить срок службы механизма, достаточно обеспечить повышение качества обработки поверхности детали (например, шлифование зубьев колес, притирку или хонингование гильзы шпинделя). Применение принудительной и циркуляционной смазок улучшает работу агрегата и увеличивает его межремонтный период. Эта же цель может быть достигнута при изменении конструкции узлов, например замена подшипников скольжения подшипниками качения, намного улучшает работу узлов. Для той же цели в ряде случаев кулачковые муфты заменяют фрикционными, а жест-  [c.323]


Смотреть страницы где упоминается термин Материалы для изготовления деталей узлов трения : [c.267]    [c.257]    [c.115]    [c.269]    [c.494]   
Смотреть главы в:

Повышение надежности машин Изд.2  -> Материалы для изготовления деталей узлов трения



ПОИСК



528—530 — Материалы для изготовления

Детали Материалы

Изготовление деталей

Материалы для узлов трения

У узлов и деталей



© 2025 Mash-xxl.info Реклама на сайте