Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отдел III СЛОЖНОЕ ДВИЖЕНИЕ Сложное движение точки

Более сложные статистические задачи возникают при исследовании топографии поля. Предположим, например, что функция (К) есть потенциальная энергия электрона с энергией %. Классические точки поворота для уравнения Шредингера находятся на поверхности (К) = Ъ [12]. Если такая поверхность замыкается вокруг минимума то может существовать связанное состояние с энергией ниже %. Такие состояния могут возникать у границ зон в аморфном пли легированном полупроводнике ( 11.2). Топология поверхностей, соответствующих уровням энергии случайного поля, может служить важной физической характеристикой системы, позволяющей отделить свободное движение носителей заряда от их туннелирования ).  [c.146]


Помимо того, оказалось, что при повышении усталостной прочности лопатки в районе бобышек ее разрушение происходило с некоторым опережением по полке, а далее в районе бобышек или этот процесс развивался одновременно. То есть изменение геометрии изменило напряженность лопатки, и ее разрушение происходило при большей наработке, но с другими закономерностями. Возникновение трещин но двум сечениям лопатки приводило к тому, что в результате разрушения по двум сечениям почти вся отделившаяся лопатка попадала в воздушный тракт двигате-пя. При своем движении в проточной части двигателя она создавала предпосылки для последующего механического повреждения остальных лопаток, что инициировало усталостное разрушения лопаток более высоких ступеней компрессора двигателя. Ранее имевшие место случаи разрушения лопаток по основанию у цапфы или у наружной полки не вызывали отделения всей лопатки, если не происходило отделения части лопатки по сложной траектории с возвращением к кромке лопатки, у которой она стартовала. В конечном итоге разрушение лопатки по двум сечениям приводило к отказу двигателя в полете, и такой вид дефекта уже стал опасным для работы двигателя.  [c.575]

Гюйгенс увидел, что этот центр не может быть определен строго математически, если неизвестен закон, согласно которому различные грузы сложного маятника взаимно изменяют те движения, которые сила тяжести стремится им сообщить в каждое мгновение однако вместо того чтобы вывести этот закон из основных положений механики, он ограничился применением косвенного положения, которое заключается в следующем если несколько грузов, прикрепленных любым образом к маятнику, опускаются исключительно под действием тяжести и если представить себе, что в некоторый момент они освобождены и отделены друг от друга, то каждый из них под влиянием полученной  [c.305]

Что касается порядка, в котором должны быть расположены разные отделы динамики, то по этому вопросу мнения широко расходятся. Для многих студентов важнее научиться по возможности решать уверенно более простые задачи, относящиеся к динамике твердого тела, чем мастерски решать более сложные задачи, относящиеся к отделу центральные силы" или к движению при разных законах сопротивления. Этими соображениями и было продиктовано принятое здесь расположение материала, но так как последние главы в значительной степени независимы одна от другой, то их можно читать без затруднений и в другом порядке.  [c.4]

Если бы мы пожелали описать движение реальной машины со всем многообразием конкретных изменений условий ее работы, то пришлось бы составить чрезвычайно сложные системы дифференциальных уравнений, которые не только было бы трудно решить, но и проанализировать с целью получения тех или иных выводов о динамике машины. Поэтому, чтобы отделить то главное, решающее, которое и определяет основной характер движения машины, от второстепенных факторов, прибегают к определенной идеализации самой машины, ее звеньев, связей и характера действующих сил.  [c.8]

Пересказывать содержание этого труда означает повторять то, что до сих пор составляет основное содержание главы Динамика твердого тела в учебниках механики. Характерно для Эйлера, что он нередко идет от движения к силам , методически отделяет кинематическую часть от динамической, систематически использует, помимо неподвижной, подвижную систему координат, связанную с телом,— систему главных осей инерции. Наконец, составив достаточно сложного вида уравнения вращательного движения, Эйлер обнаруживает, что они значительно упрощаются, если ввести в каче-  [c.154]


Абстракции и упрощения. При анализе сложных процессов, где трудно проследить и выяснить основные причинные связи и закономерности вследствие наличия целого ряда дополнительных связей и зависимостей, стараются прежде всего отделить главные закономерности и связи от второстепенных. Что в данном процессе является главным, а что второстепенным — это устанавливают сравнительным опытом. Например, в лабораторных опытах наблюдают, что падение стального шарика одинаково происходит и в воздухе и в пустоте, следовательно, сила трения воздуха очень мало сказывается на движении шарика, и падение шарика в воздухе можно считать равноускоренным движением под действием только силы тяжести, и т. п. Анализируя явление, выделяют основное, главное, отвлекаются от второстепенного, несущественного тем самым создают некоторую условную схему явления, пользуясь научными абстракциями. Абстракции — это такие понятия, Которые отображают только некоторые определенные свойства предметов или некоторые определенные характеристики процесса. Абстракциями являются, например, материальная точка, прямая линия, приложенная в точке сила, жидкость без вязкости и т. д.  [c.11]

Особенно важен случай, когда наи-низшее значение энергии, соответствующее осн. состоянию системы, лежит в области дискр. спектра и, следовательно, осн. состояние отделено от первого возбуждённого состояния энергетич. интервалом, наз. энергетической щелью. Такая ситуация характерна для атомов, молекул, ядер и др. квант, систем. Благодаря энергетич. щели внутр. структура системы не проявляется до тех пор, пока обмен энергией при её вз-ствиях с др. системами не превысит определ. значения — ширины щели. Поэтому при огранич. обмене энергией сложная система (напр., ядро или атом) ведёт себя как бесструктурная ч-ца (матер, точка). Это имеет первостепенное значение для понимания, в частности, особенностей теплового движения ч-ц. Так, при энергиях теплового движения, меньших энергии возбуждения атома, ат. эл-ны не могут участвовать в обмене энергией и не дают вклада в теплоёмкость.  [c.258]

Выделяемое при первом же взрыве тепло вполне достаточно для того, чтобы образовался ионизированный слой раскаленного газа, или плазмы, которая распространяется по цилиндру вслед за ударной волной. В таком газе орбитальные электроны отделяются от своих исходных атомов, и присутствие этих свободных электронов делает ионизированный газ (то есть плазму) электропроводящим Ч Колеблясь вместе с ионизированным газом вдоль цилиндра, волна свободных электронов создает переменный электрический ток, и, таким образом, ядерная энергия в реакторе- бомбе непосредственно превращается в электрическую (без обременительного процесса кипячения воды, необходимого для получения пара и приведения в движение турбогенератора). Конечно, мы еще должны найти способ извлекать эуу электроэнергию из реактора- бомбы , прежде чем сможем использовать его на практике. В принципе для этого можно установить соответствующие катушки-токосниматели (как показано на рис. 21) переменный электрический ток, текущий внутри реактора, будет индуцировать электрический ток в таких катушках подобно тому, как первичная обмотка трансформатора индуцирует токи во вторичной обмотке. Однако на практике токоснимающие катушки очень сложно установить настолько близко к реактору, чтобы такая индуктивная связь была достаточно эффективной. Из этого затруднительного положения можно выйти, пропустив токоснимающие электроды сквозь стенки цилиндра, однако и в этом случае весьма трудно найти такой материал для электродов, который выдержал бы громадные рабочие температуры внутри реактора (около 3500° С у внутренней поверхности цилиндра и вдвое большая — в критической зоне).  [c.70]

Дискретный характер уровней энергии, отвечающих связанным состояниям, позволяет попять, почему в определ. условиях заведомо сложные, составные системы (напр., атомы) ведут себя как аломентарыые частицы. Причина этого в том, что осн. состояние связанной сис темы отделено от первого возбуждённого состояния энергетич. интервалом, наз. энергетической щ е л ь ю. Такая ситуация характерна для атомов, молекул, ядер и др. квантовых систем. Благодаря энерге-тич. щели внутр. структура системы не проявляется до тех пор, пока обмен энергией при её взаимодействиях с др. системами не превысит значения, равного ширине щели. Поэтому ори достаточно малом обмене энергией сложная система (напр., ядро или атом) ведёт себя как бесструктурная частица (матер, точка). Так, при энергиях теплового движения, ыеныыих энергии возбуждения атома, атомные электроны не могут участвовать в обмене энергией и пе дают вклада в теплоёмкость. Справедливо и обратное заключение наличие в системе возбуждённых состояний (как это, напр., имеет место для адронов) является свидетельством в пользу её составной структуры.  [c.287]

Если движение фигуративной точки имеет то же самое число измерений, что и потенциальная поверхность (как нарисовано), движение по фигурам Лиссажу будет заполнять каждую точку потенциальной поверхности, которая имеет энергию меньше, чем энергия системы (и которая не отделена барьером от минимума). Поэтому, как только энергия выше, чем самая низкая точка хребта пересечения (предполагая, что она должна быть выше диссоциа-ционного предела), может наступить предиссоциация. Однако, если энергия молекулы как раз достаточна, чтобы достигнуть самой нижней точки хребта, предиссоциация возможна только в одной частной конфигурации, и вообще (согласно представлениям классической механики) она требует значительного времени перед тем, как достигнется эта конфигурация во время движения по фигурам Лиссажу. Когда энергия возрастает, большая часть хребта доступна для фигуративной точки, и, следовательно, для предиссоциации требуется меньше времени. Постепенному уменьшению (классического) времени жизни соответствует увеличение ширины линии [см. уравнение (IV,11) ], и, таким образом, диффузность полос поглощения снова будет постепенно возрастать. В зависимости от формы потенциальной поверхности увеличение диффузности может быть очень слабым. Примером может служить уже упоминавшаяся первая предиссоциация H N в этом случае, как и в случае СЮг, диффузность начинается постепенно, но (в противоположность СЮг) по крайней мере два колебания выделяются в спектре, и поэтому движение фигуративной точки более сложное.  [c.480]


Когда на систему действуют диссипативные силы, то характер движения оказывается, вообще говоря, более сложным. Если из трех функций Т, Р п V конечными являются только какие-нибудь две, то путем соответствующего линейного преобразования мы можем освободиться от произведений координат и получить нормальные типы движения. В предыдущэй главе мы рассмотрели случай =0. Та же самая теория, с очевидными изменениями, применима и тогда, когда Г == О или V" == О, но эти случаи, хотя они и важны для других отделов физики, таких, как теплота и электричество, вряд ли относятся к рассматриваемому нами предмету.  [c.153]


Смотреть страницы где упоминается термин Отдел III СЛОЖНОЕ ДВИЖЕНИЕ Сложное движение точки : [c.235]    [c.84]    [c.59]    [c.289]   
Смотреть главы в:

Теоретическая механика  -> Отдел III СЛОЖНОЕ ДВИЖЕНИЕ Сложное движение точки



ПОИСК



Движение сложное

Движение сложное точки

Отделы АРП

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте