Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нахождение областей параметрического резонанса

Нахождение областей параметрического резонанса. Пусть величины О), в функции Гамильтона (29) зависят от некоторого иа-  [c.400]

Нахождение областей параметрического резонанса. Пусть величины в функции Гамильтона (29) зависят от некоторого параметра а. И пусть при а = выполняется хотя бы одно из соотношений  [c.553]

Как видно из изложенного, несмотря на большое количество лабора-торно-вычислительных работ, многие важные темы механики оказались еще не охваченными. Поэтому в настоящее время да кафедре продолжается работа по улучшению и усовершенствованию практикума. Прежде всего имеется в виду расширить темы нелинейных колебаний и устойчивости ввести главы, посвященные электромеханическим системам, влиянию неидеальных источников энергии, движению при наличии случайных воздействий [3]. Большое внимание уделяется дальнейшему созданию собственно лабораторных работ, сопровождающихся проверкой теоретического материала ча действующих установках. Для наглядности полученных результатов и для полноты теоретических сведений большое значение имеет практикум на моделирующих машинах, где решаются задачи из самых различных областей механики типа решения дифференциального уравнения третьего порядка, определения зон устойчивости и неустойчивости при параметрическом резонансе, построения амплитудно-частотной характеристики механической или электромеханической системы, нахождения предельного цикла автоколебаний, вычисления критической эйлеровой нагрузки и т.п.  [c.61]


Понятие о параметрических резонансах. Уравнение (1) имеет тривиальное ре-тиение q s О, которое отвечает невозмущенному равновесию или невозмущенному периодическому движению системы. Пусть коэффициенты уравнений зависят от некоторых параметров, характеризующих свойства параметрического воздействия и (или) системы. При некоторых значениях параметров решение q = О может оказаться неустойчивым. Это означает, что имеет место параметрическое возбуждение колебаний механической системы. Множества точек, соответствующих неустойчивости, как правило, образуют области в пространстве параметров, которые называют областями неустойчивости областями динамической неустойчивости) механической системы. Если параметрическое воздействие — периодическое и если среди варьируемых параметров содержатся частоты параметрического воздействия, то особый интерес представляет нахождение частотных соотношений, при которых наблюдается наиболее интенсивное параметрическое возбуждение. Эти частотные соотношения, как и возбуждаемые при этих соотношениях колебания, называют параметрическими резонансами.  [c.117]


Смотреть страницы где упоминается термин Нахождение областей параметрического резонанса : [c.133]   
Смотреть главы в:

Теоретическая механика  -> Нахождение областей параметрического резонанса



ПОИСК



Нахождение областей параметрического резонанса в первом приближении по малому параметру

Область параметрического резонанса

Резонанс

Резонанс параметрический

Ряд параметрический



© 2025 Mash-xxl.info Реклама на сайте