Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центральные движения. Кеплеровы движения

Закон времени в кеплеровом движении, уравнение Кеплера. В общем случае мы заметили, что во всяком движении под действием центральной силы закон движения будет однозначно определен (интегралом площадей), если только определена орбита  [c.180]

Но ИЗ общей теории орбит точек, находящихся под действием центральных сил (гл. II, п. 8), мы знаем, что общий интеграл (31) уравнения (26 ) должен быть периодическим по отношению к 6 с некоторым периодом 2 в, равным удвоенному значению соответствующего апсидального угла 0, который здесь необходимо является близким апсидальному углу орбиты в кеплеровом движении. Если мы положим  [c.186]


ЦЕНТРАЛЬНЫЕ ДВИЖЕНИЯ. КЕПЛЕРОВЫ ДВИЖЕНИЯ  [c.145]

Движение материальной точки в поле центральной силы (кеплерово движение). Уравнение движения в векторной записи имеет вид  [c.355]

Кеплерово движение (движение под действием центральной силы)  [c.388]

Легко видеть, что в этом случае движение точки, притягиваемой центром 5 с силон, обратно пропорциональной квадрату расстояния, является кеплеровым движением, т. е. движением, удовлетворяю щим первым двум законам Кеплера (см. п. 1). Действительно, движение является центральным по отношению к 5, такой же, по предположению, будет и сила. Далее, орбита является эллипсом, имеющим фокус в б" и, наконец, как и во всяком движении под действием центральной силы, справедлив закон площадей по отношению к притягивающему центру.  [c.180]

Кеплерово движение — движение материальной точки в поле центральной силы ньютонова притяжения  [c.595]

До сих пор мы рассматривали ограниченную задачу двух тел, предполагая, что масса космического объекта настолько мала, что притяжение им центрального тела никак не сказывается на движении центрального тела. В случае, однако, естественных небесных тел дело обстоит не так. Центральное тело под действием другого тела совершает некоторое движение, которое, естественно, отражается на движении второго тела, которое, в свою очередь, действует на центральное тело, и т. д. Оказывается, что в конечном счете оба тела совершают кеплеровы движения относительно общего центра масс (барицентра) с равными периодами обраи ния, определяемыми по формуле (5 ), справедливой для ограниченной задачи двух тел, но величина К в этой формуле теперь имеет значение /< —/(М+т), а под величиной а следует понимать сумму полуосей обеих орбит.  [c.66]

Кеплерово движение космического аппарата в точности никогда не может осуществляться. Притягивающее небесное тело не может обладать точной сферической симметрией, и, следовательно, его поле тяготения не является, строго говоря, центральным. Необходимо учитывать притяжение других небесных тел и влияние иных факторов. Но кеплерово движение настолько просто и так хорошо изучено, что бывает удобно даже при отыскании точных траекторий не отказываться полностью от рассмотрения кепле-ровой орбиты, а по возможности уточнить ее. Кеплерова орбита рассматривается как некая опорная орбита, но учитываются возмущения, т. е. искажения, которые орбита претерпевает от притяжения того или иного тела, светового давления, сплюснутости Земли у полюсов и т. д. Такое уточненное движение называют возмущенным движением, а соответствующее кеплерово движение — невозмущенным.  [c.68]

Теперь ясно, что гораздо больше оснований рассматривать движение космического аппарата, находящегося в выбранной нами точке пространства, как кеплерово движение относительно Земли, чем как кеплерово движение относительно Солнца. В первом случае мы не учтем возмущение, составляющее 2,5%, а во втором — 26,7% от центрального ускорения.  [c.69]

Невоэмущенным или кеплеровым движением называют такое движение материальной точки, которое происходит под действием только одной центральной силы гравитационного притяжения, величина которой, приложенная к пассивно гравитирующему КА, обратно пропорциональна квадрату расстояния до притягивающего центра. В этом случае оказывается возможным аналитически получить все необходимые первые интегралы уравнений движения баллистического невозмущенного движения КА, полностью его описывающие. Для решения этой задачи обычно используют хорошо разработанные в небесной механике методы решения задачи двух тел. сводящейся при принятых предположениях к ограниченной задаче двух тел.  [c.52]


Итак, невоэмущенным называют движение КА, происходящее под действием только центральной составляющей сил тяготения основного притягивающего тела. В поиске решения системы уравнений (2.4) и состоит сущность теории невозмущенного (кеплерова) движения КА. Так как (2.4) является системой б-го порядка, то для ее решения необходимо определить шесть интегралов. Общим интегралом системы (2.4) являются соотношения между временем I, координатами КА х, у,гк шестью произвольными постоянными Ср С2,. .., Сд1  [c.55]

Среди проблем небесной механики, имеющих важное прикладное значение для космических полетов, ограниченная задача трех тел играет центральную роль. Эта задача состоит в описании возможных траекторий движения материальной точки пренебрежимо малой массы (пилотируемого или беспилотного космического аппарата, метеорита, астероида) под действием гравитационного притяжения двух крупных небесных тел, которые в свою очередь предполагаются движущимися относительно друг друга по окружностям в соответствии с кеплеровыми законами. Ограничиваясь двумерным случаем, уравнения движения материальной точки можно записать в следующем виде  [c.93]

Если тело, движущееся в ньютоновском центральном поле сил, не является материальной точкой, а является твердым телом конечного размера, то его поступательное и вращательное движение, строго говоря, взаимосвязаны центр масс тела движется не по кеплеровой траектории.  [c.145]

Д. Кеплерова задача. Речь идет о движении в центральном  [c.39]

При переходе космического аппарата через границу сферы действия приходится переходить от одного центрального поля тяготения к другому. В каждом поле тяготения движение рассматривается, естественно, как кеплерово, т. е. как происходящее по какому-либо из конических сечений — эллипсу, параболе или гиперболе, причем на границе сферы действия траектории по определенным правилам сопрягаются, склеиваются (как это делается, мы увидим в третьей и четвертой частях книги). В этом заключается приближенный метод расчета космических траекторий, который иногда называют методом сопряженных конических сечений.  [c.70]

Уравнения движения точки в центрально-симметричном поле. Одномерный эффективный потенциал поля. В истории физики кеплеровой называется задача определения траектории небесного тела, движущегося в поле тяготения Солнца. Аналогичная задача возникает при классическом подходе к проблеме движения электрона в поле ядра.  [c.228]


Смотреть страницы где упоминается термин Центральные движения. Кеплеровы движения : [c.274]    [c.281]   
Смотреть главы в:

Курс теоретической механики Том 1 Часть 1  -> Центральные движения. Кеплеровы движения



ПОИСК



Движение планеты в центральном ньютоновском поле сил. Уравнение Кеплера. Связь между истинной - и эксцентрической аномалиями

Движения кеплеровы

Кеплер

Одномерное движение в консервативном поле. Движение заряда в электромагнитном поле. Движение частицы в центрально-симметричном поле Задача Кеплера

Ось центральная



© 2025 Mash-xxl.info Реклама на сайте