Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Галилея принцип относительност

Галилея принцип относительности 50 Гамильтона оператор 222  [c.341]

При переходе от одной И. с. о. к другой в классич. механике Ньютона для пространств, координат и времени справедливы преобразования Галилея (см. Галилея принцип относительности), а в релятив. механике — Лоренца преобразования.  [c.145]

В предельном случае относит, скоростей v, много меньших скорости света (когда пренебрегают всеми эффектами порядка и выше), Р. и. переходит в галилееву (нерелятивистскую) инвариантность — инвариантность относительно преобразования Галилея (см. Галилея принцип относительности).  [c.322]


Галилеев принцип относительности дан здесь с полной наглядностью. Но тут же Галилей ставит вопрос о причине всех описанных им явлений, и ответ таков Так все происходит потому, что общее движение корабля, будучи передано воздуху и всем предметам, которые в нем находятся, и не являясь противным их естественному устремлению (курсив наш. — И, П.), сохраняется в них неослабно  [c.96]

И все же а пять-шесть десятилетий был пройден большой путь. Значительные успехи были достигнуты в статике, но главное было сделано вне ее. Закон инерции (сначала круговой — у Галилея, затем прямолинейной — у Декарта) снял различие между состоянием покоя и состоянием движения. Система Коперника вытесняла систему Птолемея, и в связи с этим галилеев принцип относительности прочно вошел в науку. Стиралось различие земных ( местных ) движений и движений небесных тел наука о дви-  [c.103]

Что помешало ему, творцу теории эволют и эвольвент, придать общность своему результату — рассмотреть движение по любой (плоской) кривой, аппроксимируя ее окружностью И почему он в течение десятилетий так ж не опубликовал своей работы о центробежной силе В дошедшем до нас изложении она отличается от Маятниковых часов и работы О движении те л под влиянием удара отсутствием гипотез , что на языке Гюйгенса было равносильно аксиомам. По-видимому, именно потому, что в этой работе Гюйгенс подошел к формулировке общих положений динамики, он должен был привести их в систему и чем-то дополнить те гипотезы (принцип инерции, галилеев принцип относительности, положение о сохранении относительной скорости при упругом ударе, гипотеза о центре тяжести — о ней еще будет сказано), которыми он пользовался ранее, не изменяя при этом воспринятому от Декарта положению об относительности всякого движения. Разрешить такую проблему Гюйгенс (как и никт о в то время) не мог. Однако работа О центробежной силе показывает, что самые сложные задачи, в НО принципе доступные науке того времени, были Гюйгенсу по плечу.  [c.110]

Из полученного результата вытекает, что никаким механическим экспериментом нельзя обнаружить, находится ли данная система отсчета в покое или совершает поступательное, равномерное и прямолинейное движение. В этом состоит открытый еще Галилеем принцип относительности классической механики.  [c.293]

Галилея принцип относительности 32 Задача возмущенная 350, 359  [c.473]

Для любых механических явлений все инерциальные системы отсчета оказываются равноправными. Эти утверждения выражают механический принцип относительности (принцип относительности Галилея). Принцип относительности является одним из наиболее общих законов природы, ибо в специальной теории относительности он распространяется и на немеханические явления (У.4.2.Г).  [c.51]

Галилея принцип относительности 239  [c.720]

V с релятив. эффекты исчезают и преобразования движения переходят в преобразования Галилея, справедливые для классич. механики (см. Галилея принцип относительности).  [c.508]

Инвариантность и ковариантность законов механики. Принцип относительности Галилея. Классическая механика исходит из того, что все инерциальные системы равноправны Смысл этого утверждения состоит в следующем все законы и уравнения механики, установленные для замкнутой системы в какой-либо инерциальной системе отсчета, не изменяются при переходе к любой другой инерциальной системе отсчета Это утверждение называют принципом относительности Галилея.  [c.44]


Разумеется, введенный выше постулат 3° — сохранение меры при временных взаимодействиях — должен быть инвариантен по отношению к преобразованиям Галилея. Это требование — прямое следствие принципа относительности Галилея.  [c.49]

В основе классической механики лежит принцип относительности Галилея, согласно которому все механические явления при одинаковых начальных условиях протекают одинаково во всех инерциальных системах отсчета. Инвариантность уравнений механики по отношению к преобразованиям Галилея есть математическое выражение вышеупомянутого принципа относительности механики. "  [c.421]

Учитывая принцип относительности Галилея, это движение сводят к установившемуся обтеканию самолета безграничным потоком жидкости, скорость которого в бесконечности противоположна скорости тела. Течение ж идкости при этом относится к системе осей координат, жестко связанной с самолетом.  [c.265]

С другой стороны, инерциальную систему координат можно определить как такую подвижную систему, по отношению к которой динамические дифференциальные уравнения движения имеют тот же вид, какой они имеют, когда система координат находится в покое, т. е. без учета переносной силы инерции и силы инерции Кориолиса. В этом состоит принцип относительности классической механики Галилея — Ньютона.  [c.233]

Принцип относительности Галилея. Для инерциаль-ных систем отсчета справедлив принцип относительности, согласно которому все инерциальные системы по своим механическим свойствам эквивалентны друг другу. Это значит, что никакими механическими опытами, проводимыми внутри данной инерциальной системы, нельзя установить, покоится эта система отсчета или движется. Во всех инерциальных системах отсчета свойства пространства и времени одинаковы, одинаковы также и все законы механики.  [c.36]

Данное утверждение составляет содержание принципа относительности Галилея — одного из важнейших принципов ньютоновской механики. Этот принцип является обобщением опыта и подтверждается всем многообразием приложений ньютоновской механики к движению тел, скорости которых значительно меньше скорости света.  [c.36]

В соответствии с принципом относительности Галилея законы механики одинаковы во всех инерциальных системах отсчета. Это значит, в частности, что уравнение  [c.42]

Полученный результат полностью соответствует принципу относительности Галилея, согласно которому законы механики одинаковы во всех инерциальных системах отсчета.  [c.71]

В частности, если замкнутая система консервативна, то ее полная механическая энергия сохраняется во всех инерциальных системах отсчета. Этот вывод находится в полном соответствии с принципом относительности Галилея.  [c.113]

Признается справедливость закона инерции Галилея — Ньютона, согласно которому тело, не подверженное действию со стороны других тел, движется прямолинейно и равномерно. Этот закон утверждает существование инерциальных систем отсчета, в которых выполня- ются законы Ньютона (а также принцип относительности Галилея). Рис. 6.1  [c.173]

Выполняется принцип относительности Галилея все инерциальные системы отсчета эквивалентны друг другу в механическом отношении, все законы механики одинаковы в этих системах отсчета, или, другими словами, инвариантны относительно преобразований Галилея.  [c.174]

Первому испытанию подвергся принцип относительности Галилея, который, как известно, касался только механики — единственного раздела физики, достигшего к тому времени достаточного развития. По мере развития других разделов физики, в частности оптики и электродинамики, возник естественный вопрос распространяется ли принцип относительности и на другие явления Если нет, то с помощью этих (немеханических) явлений можно в принципе различить инерциальные системы отсчета и в свою очередь поставить вопрос о существовании главной, или абсолютной, системы отсчета.  [c.174]

Первый постулат представляет собой обобщение принципа относительности Галилея на любые физические процессы  [c.177]

Принцип относительности Эйнштейна. Еще во времена Галилея было установлено, что в любых инерциальных системах отсчета все механические явления  [c.280]

ГАЛИЛЕЯ ПРЕОБРАЗОВАНИЯ в к л a с с и ч. механике Ньютона — преобразования координат и времени при переходе от одной ииерциалъной системы отсчёта к другой. См. Галилея принцип относительности.  [c.392]

Принципы И. делятся на два осн. класса. И. первого класса, наиб, фундаментальная, характеризует геом. структуру пространства-времепи. Однородность и изотропность нространства и однородность времени приводят к И. физ. законов относительно группы сдвигов координат и времени и пространств, вращений. Для изолиров. системы отсюда следует сохранение импульса, энергии и момента импульса. Эта И. является составной частью относительности принципа, содержащего дополнительно утверждение об И. относительно выбора инерц. системы отсчёта. В нерелятивистской теории полной группой И. является группа Галилея (см. Галилея принцип относительности), а релятивистская И.— это И. относительно преобразований Пуанкаре группы. И. первого класса универсальна и отиосится ко всем типам взаимодействий, к классич. и квантовой теории. В квантовой теории поля столь же универсальна СРТ-Ж. (см. Теорема СРТ), следующая из релятивистской инвариантности и причинности принципа.  [c.137]


Опыт показывал, что сформулированный Галилеем принцип относительности, согласно к-рому механич. явления протекают одинаково во всех инерциальных систсмах отсчёта, справедлив и Д-1я эл,-магн. явлений. Поэтому ур-ния Максвелла не должны изменять свою форму (должны быть инвариантными) при переходе от одной инерци-альной системы отсчёта к другой. Однако оказалось, что это справедливо лишь в том случае, если преобразования координат и времени при таком переходе отличны от преобразований Галилея, справедливых в механике Ньютона, Лоренн нашёл ли преооразования (Лоренца преобразования), но не смог дать им правильную интерпретацию, Это было сделано Эйнштейном в его спец, теории относительности.  [c.313]

Однако, для того чтобы в рамках лиевского варианта пол5гчить непосредственно законы сохранения движения центра масс и энергии (как производящие функции некоторых бесконечно малых канонических преобразований), потребовалось бы такое расширение канонического формализма, которое бы придало и времени характер канонической переменной. Но, несмотря на то, что уже Ньютон (и даже некоторые его предшественники) ясно представлял себе однородность времени и галилеев принцип относительности, обе эти симметрии рассматривались как бы совершенно независимо от широко используемой евклидовой симметрии. По существу представление о галилеево-ньютоновой группе G как единой фундаментальной  [c.234]

Галилеева симметрия в конце XIX в. не включалась в канонический формализм как мы уже отмечали, вопрос о том, какой закон сохранения отвечает ей, оставался открытым. В силу особой роли времени в классической механике галилеево-ньютонова группа как некоторая единая система преобразований, действующая на пространственно-временном многообразии, оставалась неизвестной, несмотря на то, что все ее генераторы были известны, по существу говоря, со времени Галилея и Ньютона. Галилеев принцип относительности имел большое значение для обоснования системы Коперника (Галилей), использовался Гюйгенсом в качестве одного из главных постулатов теории упругого удара, но уже в Началах Ньютона формулировался в виде следствия из трех основных аксиом или законов механики, а в механике XVIII в., как правило, не фигурировал вообще. Во второй половине XIX в. возобновляется некоторый интерес к физическим основам механики, в частности к вопросам об абсолютном пространстве, инерциаль-ных системах отсчета и принципе относительности Галилея (Э. Мах, К. Нейман, Л. Ланге и др.) . Частично это было связано с проблемой увлекаемо-сти эфира в оптике и электродинамике движущихся сред. Однако исследования эти не носили систематического характера, и галилеева симметрия в механике не рассматривалась на одном уровне с евклидовой симметрией. Отчетливое понимание роли галилеевой симметрии в классической механике и открытие галилеево-ньютоновой группы произошло, по сути дела, после открытия теории относительности. Ф. Клейн в этой связи подчеркивал Эта выделенность t (т. е. времени.— В. В.) играла определенную тормозящую роль в истории развития механики. Несмотря на то, что уже Лагранж  [c.238]

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, принцип физ. равноправия всех инерциалъных систем отсчёта (и. с. о.) в классич. механике, проявляюш егося в том, что законы механики во всех таких системах одинаковы. Отсюда следует, что никакими механич, опытами, проводящимися в какой-либо и. с. о., нельзя определить, покоится данная система или движется  [c.106]

Введем теперь вектор д с координатами dfidvj , df/dvy и df/dv . Каждая из этих частных производных представляет собой функцию переменных Уд, Vy, о. и т. Поэтому вектор д является функцией переменных t. , Vy, и т, т. е. q есть вектор-функция от т и от векторного аргумента , удовлетворяющая равенству (1). Функция q m, v) аддитивна и, являясь вектором, инвариантна по отношению к повороту системы отсчета. Таким образом, опираясь только на принцип относительности Галилея, мы установили важный факт если существует скалярная функция удов-  [c.51]

Теперь, исходя из принципа относительности Галилея, потребуем, чтобы равенство (5) (и аналогичные равенства для df/dVy и dfldv ) сохранялось при преобразованиях Галилея. Легко видеть, что повторяя подобные рассуждения, но только исходя не из равенства (1), а из равенства (5) (и аналогичных равенств для dfldVy и df/dvj), мы установим, что равенству типа (1) должны удовлетворять все вторые производные, т. е. шесть функций  [c.51]

В любом случае, однако, предполагаются выполненными исходные предположения, сформулированные в 2. Отход от этих предположений невозможен в пределах классической механики и приводит к построению иных систем механики. Такая ситуация возникает, например, при отказе от описанных гыше представлений о пространстве и времени и от принципа относительности Галилея. Именно отказ от этих исходных представлений о времени и пространстве и предположение о том, что уравнения и законы механики должны быть инвариантны (или ковариантны) по отношению не к преобразованиям Галилея, а к иным преобразованиям-преобразованиям Лоренца, привели к появлению релятивистской механики. С этими исходными представлениями связаны ограничения, в пределах которых законы классической механики могут применяться при изучении движения объектов реального мира.  [c.66]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]


Смотреть страницы где упоминается термин Галилея принцип относительност : [c.158]    [c.239]    [c.239]    [c.554]    [c.15]    [c.106]    [c.440]    [c.277]    [c.280]    [c.365]    [c.366]   
Курс теоретической механики (2006) -- [ c.239 ]



ПОИСК



Галилей

Галилея

Галилея принцип

Галилея принцип относительности

Галилея принцип относительности

Динамические уравнения относительного движения точки. Принцип относительности Галилея — Ньютона

ИНЕРЦИАЛЬНЫЕ СИСТЕМЫ ОТСЧЕТА И ПРИНЦИП ОТНОСИТЕЛЬНОСТИ. ЭЛЕМЕНТЫ РЕЛЯТИВИСТСКОЙ МЕХАНИКИ Занятие 15. Инерциальная система отсчета и принцип относительности Преобразования Галилея

Инвариантность и ковариантность законов механики. Принцип относительности Галилея

Инерциальные системы отсчета. Принцип относительности Галилея

Инерциальные системы отсчета. Силы в механике. Второй закон Ньютона Третий закон Ньютона. Принцип относительности Галилея. Приближение внешнего поля Импульс, момент импульса, потенциальная энергия. Законы изменения динамических переменных

Механический принцип относительности Галилея — Ньютона

Основные законы механики и принцип относительности Галилея в модели замкнутой системы материальных точек

Основные понятия и законы динамики Ньютона. Принцип относительности Галилея

Относительности принцип Галилея общий

Понятие об инерциальной системе отсчета и законы Ньютона Принцип относительности Галилея

Принцип дальнодействия относительности Галилея

Принцип относительности

Принцип относительности Галилея и быстрые движения

Принцип относительности Галилея и законы сохранения

Принцип относительности Галилея — Ньютона

Принцип относительности Галилея. Преобразования Галилея. Постулаты специальной теории относительности Эйнштейна

Принцип относительности в механике и формулы преобразования Галилея . 130. Электродинамика движущихся сред

Принцип относительности в механике. Преобразования Галилея



© 2025 Mash-xxl.info Реклама на сайте