Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхностная волна акустическа нелинейная

Рассмотрим несколько подробнее влияние нелинейности и дисперсии на распространение поверхностных гравитационных волн. По аналогии с нелинейными акустическими волнами сразу можем сказать, что скорость различных участков поверхностной волны будет различна  [c.140]

Преобразование Радона трансформирует изображение в одномерный сигнал определенного вида, что позволяет вычислять свертку и корреляцию двух изображений [13], линейную и нелинейную фильтрации, сжатие и кодирование информации [18] в устройствах, предназначенных для обработки одномерных сигналов. Оценки показывают, что использование современных элементов оптоэлектроники (устройств, использующих поверхностные акустические волны, акустических модуляторов и т. д.) позволяет таким системам обработки изображений успешно конкурировать, с другими, аналогичными по назначению устройствами [13].  [c.14]


Например, сжатие ЛЧМ-сигнала во времени может быть осуществлено с помощью устройства, изображенного на рис. 13.19. Принцип действия его основан на том, что углы рассеяния света, прошедшего через различные участки звукового поля, обратно пропорциональны длине волны звука. Поэтому весь дифрагированный свет практически одновременно попадает на вход фотоприемника, что и влечет за собой сжатие ЛЧМ-сигнала. Коэффициенты сжатия для устройств подобного типа составляют - 100 [6, 56]. Для сравнения вспомним, что в акустоэлектронных фильтрах с апериодическими отражательными решетками (см. 4 гл. 12) этот параметр достигает нескольких десятков тысяч. Используя нелинейность характеристики фотоприемника, можно получить функцию свертки двух противоположно направленных акустических сигналов [571. Для этого на кристалл нужно направить пучок света и выделить с фотоприемника дифрагированный световой сигнал на двойной частоте. Согласно [57] вносимые потери устройства, использующего дифракцию на поверхностных акустических волнах, составляли 44 дБм, что вполне сопоставимо с эффективностью акустоэлектронных устройств свертки на основе токовой нелинейности (см. 7 гл. 12). Для повышения конкурентоспособности акустооптических процессоров необходимы дальнейшие поиски материалов с высокими фотоупругими свойствами. Определенные возможности здесь открывает использование взаимодействия света с волнами пространственного заряда, сопровождающего распро-  [c.365]

Лекции 5-6 посвящены бегущим волнам. Здесь рассматриваются не только общепринятые модели волновых движений частиц твердых тел, жидкости и газа, но также объемные и поверхностные сейсмические волны и современная сейсмическая модель Земли. На основе системы уравнений Эйлера, введенной в предыдущих учебных пособиях этой серии, предлагается адаптированный подход к описанию гравитационно-капиллярных волн и оцениваются характеристики таких волн, включая волны цунами. Для наиболее подготовленных студентов излагаются основные элементы нелинейного распространения акустических волн конечной амплитуды.  [c.4]

Поверхностная акустическая волна распространяется в тонком слое под поверхностью подложки и при использовании более высокого возбуждающего электрического напряжения амплитуда механического смещения может принимать высокие значения, что является причиной появления нелинейных эффектов, которые приводят к зависимости свойств фильтра от амплитуды входного напряжения.  [c.415]

В устройствах А. используются УЗ волны ВЧ диапазона и гиперзвук, волны (от 10 МГц до 1,5 ГГ как объёмные (продольные и сдвиговые), так и поверхностные акустические волны. По физ. принципам можно выделить пассивные линейные устройства, в к-рых производится линейное преобразование сигнала (линии задержки, фильтры и др.), активные линейные устройства (усилителя сигналов) и нелинейные (устройства для генерации, модуляции, перемножения и др. преобразований сигналов).  [c.17]

Важным эффектом импульсного лазерного воздействия на конденсированные среды является образование периодич. поверхностных структур — оптически наведённых решёток. При взаимодействии мощного лазерного излучения с поверхностью в результате вынужденного рассеяния на материальных поверхностных возбуждениях (акустических и каииллярных волнах, волнах испарения) в течение длитсльиости импульса на поверхности нарастают синусоидальные (а также более сложные) волны модуляции рельефа, что приводит к появлению нелинейного экспоненциально нарастающего во времени оптич. поглощения (поглощательная способность поверхности может возрастать более чем на порядок).  [c.561]


На рис. 11.3, б изображен другой возможный процесс, происходящий при встречном взаимодействии акустических волн со—(о=0 и к—(—А)=2й. В этом случае результирующий электрический сигнал постоянен во времени, но изменяется в пространстве с периодом п/к. Очевидно, описанггый процесс может использоваться для запоминания акустических сигналов. Рассмотренные несинхронные взаимодействия представляют интерес для разработки нелинейных устройств обработки данных. Подробнее об этом будет говориться в гл. 12. Там же будут рассмотрены нелинейные акустические эффекты для объемных и поверхностных волн в пьезополупроводниковых кристаллах, в которых основным механизмом взаимодействия является токовая нелинейность электронной плазмы полупроводника. По порядку величины токовая нелинейность обычно намного превосходит упругую, пьезоэлектрическую и стрикционную нелинейности, поэтому интерес к исследованию нелинейных эффектов в пьезополупроводниках, в частности различных видов волновых взаимодействий [47, 48], в настоящее время достаточно велик.  [c.296]

На процесс усиления звука нелинейность оказывает вредное влияние, приводя к уменьшению коэффициента усиления и вследствие этого к ограничению динамического диапазона усилителей. Но нелинейные [явления могут быть обращены и на пользу в устройствах обработки сигналов, использующих различные взаимодействия акустических волн с электрическими и механическими полями и между собой. Вследствие своей высокой эффективности в большинстве устройств используется токовый механизм нелинейности, обус-ловленный взаимодепствием зву-ковой волны с электронами. В настоящее время [70] наиболее существенным применением не только нелинейных акустоэлектронных явлений, но и взаимодействий звука с электронами вообще являются конвольверы на ПАВ, или устройства свертки и корреляции, принцип действия которых основан на встречном взаимодействии двух поверхностных волн (рис. 12.18). Конструкция типичного конвольвера, использующего токовый механизм нелинейности полупроводника, в сущности не отличается от конструкции усилителя ПАВ на основе слоистых структур (ср. рис. 12.16). Если на входы 1 м 2 такого устройства подаются амплитудно-модулиро-ванные электрические сигналы с частотами заполнения (Oj и (Оз (обычно ui=(i)2= i) — см. ниже), то в пьезоэлектрике возбуждаются две встречные поверхностные волны, временные множители которых удобно записать в виде  [c.333]

Аванесян С. М., Ахманов С. А., Гусев В. Э. и др. Нелинейные режимы оптического возбуждения поверхностных и объемных акустических волн в кремнии Препринт физического факультета МГУ. №20.— М., 1986.  [c.303]

В гл. 3 и 4 мы познакомились с нелинейными явлениями в газах и жидкостях при распространении в них акустических волн конечной амплитуды. Эти явления были связаны с нелинейностью уравнений движения и состояния. Как мы уже обращали внимание в гл. 8, в теории упругости изотропного твердого тела также имеют место подобного рода нелинейности. По этой причине распространение упругих волн в твердых телах должно приводить к явлениям, аналогичным изученным в гл. 3 и 4 генерации гармоник, взаимодействию волн, нелинейному поглощению и т. д. Вместе с тем, поскольку в твердых телах могут существовать несколько типов волн (продольные, поперечные, поверхностные), нелинейные эффекты здесь более многообразны. Качественно новые нелинейные явления можно наблюдать, если от изотропных диэлектриков перейти к случаю анизотропных кристаллов, кристаллов, обладающих пьезоэффектом, и в особенности полупроводниковых и ряда магннтоупорядочен-пых кристаллов.  [c.280]

Развитие темы естественно подводит к понятию пьезоэлектрических поверхностных акустических волн — обобщенных волн Рэлея ( 4.10) и волн Блёстейна—Гуляева ( 4.11). Уделяемое им внимание обосновывается важностью устройств с поверхностными акустическими волнами в обработке сигналов. В конце главы рассмотрены некоторые элементы нелинейной теории пьезоэлектричества и ее применение к анализу таких  [c.220]

Описанные опыты ставили своей целью выяснить механизм процесса, однако они в значительной мере отличаются от реальных случаев, когда разбрызгивание жидкости происходит с новерхности влажного тела или из капилляров в поверхностном слое. Потоки в этом случае будут зависеть от размера и конфигурации обтекаемого тела, поэтому характер распыления несколько иной и будет зависеть от размеров нор, влажности материала и других факторов. Однако нелинейный характер зависимости скорости удаления влаги механическим способом от уровня звука сохраняется [28] (па рис. 6 приведены кривые сушки образцов пенополиуретана толш,иной 15 мм, с начальной влажностью около 900%). По-видимому, это связано с нелинейной зависимостью скорости акустических потоков от амплитуды колебательной скорости звуковой волны.  [c.593]

Часть II книги посвящена электронным устройствам на основе поверхностных акустических волн (ПАВ). Это относительно новая область применения пьезоэлектрических элементов, развитие которой стало возможно после решения технологических проблем прецизионной литографии. Для понимания дальнейших разделов книги здесь приведены основные свойства ПАВ, причем использована концепция изложения, принятая в современной литературе по ПАВ. Уделено внимание возбуждению и детектированию ПАВ с помощью встречно-штыревого преобразователя, и представлены различные варианты его эквивалентной электрической схемы. В этой части центральными являются разделы, посвященные линейным аналоговым элементам и устройствам на ПАВ, т. е. прежде всего частотным фильтрам и резонаторам. Основное внимание уделено методам синтеза встречноштыревого преобразователя в соответствии с требуемой частотной или импульсной характеристикой, а также анализу свойств фильтров и резонансных систем. Кратко описаны устройства на ПАВ, предназначенные для обработки дискретных сигналов, а также устройства, использующие нелинейные явления. (Эта очень перспективная область применения ПАВ требует более подробного и полного изложения, однако такая задача выходит за рамки данной монографии.)  [c.4]



Смотреть страницы где упоминается термин Поверхностная волна акустическа нелинейная : [c.250]    [c.259]    [c.150]    [c.9]    [c.220]    [c.90]   
Механика электромагнитных сплошных сред (1991) -- [ c.150 ]



ПОИСК



Волна нелинейная

Волны поверхностные

Поверхностная волна акустическа



© 2025 Mash-xxl.info Реклама на сайте