Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

279 —Механизмы агрегатных станков

В ряде организаций (ЭНИМС, СКБ-1, СКБ-8 и др.) ведется большая работа по расширению унификации узлов, деталей и механизмов агрегатных станков и регламентации основных и присоединительных размеров. Применение унифицированных узлов и деталей в агрегатных станках и автоматических линиях из них достигает 80%.  [c.32]

Большинство его узлов сохраняют свое назначение и пригодны для обработки различных деталей. К ним прежде всего относятся основные характерные механизмы агрегатных станков агрегатные силовые головки, которые объединяют механизмы главного движения и подачи. Все агрегатные головки нормализованы и различаются по типу механизмов подачи (гидравлические, электромеханические, механические, пневмогидравлические и т. д. см. гл. VII, 2). Так как каждая обрабатываемая деталь требует различного количества рабочих инструментов, их расположения и т. д., то силовая головка имеет один выходной вал, а с торца к ней крепится шпиндельная коробка, в которой и производится размножение рабочих шпинделей.  [c.31]


Силовые головки предназначены для сообщения режущим инструментам главного вращательного движения и движения продольной подачи. Они являются основными исполнительными механизмами агрегатных станков и автоматических линий.  [c.174]

Технологическое оборудование можно компоновать в автоматические линии, т. е. создавать систему автоматов, объединенных средствами транспортирования и управления. Большое развитие получают автоматические линии, состоящие из агрегатных станков. Такие линии создают для обработки вполне определенных деталей, например, корпусов для механизмов автомобилей, тракторов и др. Автоматические линии могут быть далее объединены в более сложные системы (например, цехи), которые образуют автоматические заводы. Станки с ПУ также могут быть объединены в автоматические линии, которые могут обслуживаться ЭВМ.  [c.393]

Для выяснения особенностей основ управления системой механизмов с несколькими двигателями на рис. 18.7 приведены принципиальные схемы ряда устройств агрегатного станка, на поворотном столе 2 которого установлена деталь /. В детали / обрабатывается одно (или несколько отверстий) с помощью сверлильной головки 5, перемещаемой по направляющим с помощью цилиндра Z/1. Переме-  [c.486]

В общей длительности собственных простоев (20с = 25,9 %) потери времени по инструменту составили 35 % (8,8 % фонда времени), простои для обнаружения и устранения отказов оборудования — также 35 %, простои по техническому обслуживанию — 28%. Исследования показали, что для автоматических линий из агрегатных станков типична высокая интенсивность отказов механизмов и инструментов при сравнительно малом среднем времени единичных простоев для обнаружения и установления причины отказов.  [c.199]

Для обеспечения функционирования гравитационного конвейера-накопителя после каждого протяжного станка (а далее — и других станков) установлены механизмы для подъема обрабатываемых деталей, которые затем по роликам лотка перемещаются под действием собственной силы тяжести к последующему станку. После обработки на четвертом протяжном станке крышки сортируются и направляются на многошпиндельные агрегатные станки для обработки отверстий. Для повышения производительности обработка крышек одного наименования проводится в три потока на трех параллельно работающих станках 8—10. Крышки  [c.168]

Станкостроительные заводы СССР изготовили линии из агрегатных станков для обработки блоков цилиндров двигателей автомобилей и тракторов, головок блоков цилиндров, картеров коробок передач, корпусов тракторных трансмиссий, переднего бруса рамы трактора, корпуса механизма переключения скоростей, корпуса конечной передачи, картера шестерен, корпуса масляного насоса, картера маховика, корпуса масляного фильтра, впускного и выпускного коллекторов, крышек коренных подшипников, балок передней оси грузового автомобиля, картеров задних и промежуточных мостов автомобилей, коленчатых валов двигателей внутреннего сгорания, корпуса вала отбора мощности, шатунов автомобилей и тракторов, поддерживающих роликов гусеничных тракторов, корпуса поворотного кулака автомобиля, штанги реактивной подвески, балансиров, кронштейна балансира задней подвески, картера раздаточной коробки, ведущих колес, ступиц, башмака рессоры, звена гусеницы, направляющего колеса, звездочки, кожуха полуоси, станин электродвигателей, корпуса удлинителя кардана, кассеты хлопкоуборочного комбайна, корпуса вентилей, тормозных колодок и др  [c.8]


Удельная длительность и среднее время восстановления механизмов АЛ из агрегатных станков  [c.383]

В машиностроении такие механизмы успешно используются в самодействующих головках, агрегатных станках, автоматических линиях и многих других машинах. Чтобы получить возвратно-поступательное движение вперед и назад головки с механическим приводом, требуется много шестерен, подшипников, валиков и других деталей, которые не нужны в силовой головке с гидроприводом. Такая головка может развивать усилие свыше 20 тыс. кг, допуская регулирование скоростей на рабочем ходу и быстрый отвод расположенного на ней инструмента. А быстрый отвод инструмента— это сокращение времени холостого хода, повышение производительности машины.  [c.72]

Производительность модулей при серийном выпуске увеличивают повышением концентрации операций обработки. Она достигается установкой нескольких станков, обрабатывающих деталь с нескольких сторон (крупные детали), применением многошпиндельных насадок, закрепляемых на шпинделе станка или на револьверных головках, причем обработка крупных деталей с разных сторон выполняется с помощью нескольких револьверных головок. Таким образом, развитие ГАП в серийном производстве идет так же, как развивалась автоматизация в массовом производстве,— по пути увеличения концентрации операций. В условиях ГАП особенно необходимо строить обрабатывающие центры из агрегатированных узлов, позволяющих осуществлять их перекомпоновку в случаях резкого изменения профиля заказов, и заменять узлы на запасные для последующего ремонта вне производственного участка. Наблюдается тенденция применения в переналаживаемых агрегатных станках числового программного управления, что значительно уменьшает время их переналадки. Таким образом, агрегатирование основного и вспомогательного (загрузочных поворотных столов, делительных столов для спутников и шпиндельных насадок, накопителей-транспортеров, поворотных механизмов для инструмента, кантователей, транспортных самоходных тележек, роботизированных тележек, манипуляторов и роботов) оборудования создает хорошую базу для разработки унифицированных методов и средств диагностирования типовых агрегатных сборочных единиц.  [c.131]

Известно, что все разнообразие многопозиционных агрегатных станков создается из небольшого количества унифицированных сборочных единиц и механизмов, применяемых в различных сочетаниях в соответствии с технологическим процессом обработки. Каждый такой механизм является автономно работающим устройством, имеющим свой привод. Таким образом, разработка типовых процедур для ограниченного количества основных унифицированных узлов позволяет проводить диагностирование всей гаммы агрегатных станков. Добавляется лишь задача обнаружения дефектов и сбоев системы управления станка и Линии в целом. Основными унифицированными узлами являются поворотные столы, силовые столы и головки, барабанные приспособления, кантователи, транспортеры. Эти узлы имеют электромеханический, гидравлический или пневматический привод. Применяются также сочетания этих приводов.  [c.132]

Область исправных состояний получают на основе анализа норм технических условий, результатов экспериментальных данных и моделирования работы механизма на ЭВМ. Такое сочетание методов позволяет дополнить необходимый перечень допусков на параметры, не регламентированные в технических условиях, но требующие контроля, исходя из опыта эксплуатации механизма и данных моделирования. Например, в ходе стендовых исследований нескольких агрегатных станков, а также при определении кинематических и силовых параметров в условиях эксплуатации составлялся перечень дефектов, получались осциллограммы станка в исправном и дефектном состояниях. При этом на заводах, эксплуатирующих агрегатные станки, собиралась информация о дефектах, установленных заводским персоналом. На основе полученного списка, согласно рис. 8.1, с учетом конструктивных особенностей станка и реальных производственных условий выбирались методы, перечень диагностических параметров и контрольные точки.  [c.134]

Численные значения этих параметров составляют массив переменной (измеряемой) информации, а допустимые их значения, найденные в результате предварительных исследований и анализа норм технических условий, составляют массив постоянной информации. В качестве примера на рис. 8.9 приведен алгоритм диагностирования механизма подачи пинольных силовых головок с гидроприводом. Последовательность построения алгоритма определялась частотой проявления и значимостью дефектов исследованной конструкции силовой головки. Дефекты циклограммы определялись и устранялись при исследовании агрегатного станка в собранном состоянии.  [c.144]

Таким образом, быстродействие здесь рассматривается совместно с нагрузочной способностью, которая ограничена величиной коэффициента X < 1- Например, для механизма 1 (табл. 23) при % = 1 (практически применяются более строгие ограничения) величина момента инерции планшайбы не может превышать 5,6 кгс-м-с, вто время как для агрегатных станков с поворотными столами такого типа величина J может достигать нескольких десятков кгс-м-с . Для этих условий потребовалось бы применение пневмоцилиндра zd = 300 мм, что обычно неприемлемо для столов с диаметром планшайбы D = 1 м по габаритным соображениям. С помощью данных, полученных при моделировании, могут быть с достаточной точностью рассчитаны ограничения, накладываемые критериями нагрузочной способности и геометрическими критериями, которые определяют границы преимущественного применения пневматического и гидравлического приводов.  [c.100]


Метод сопоставления осциллограмм, основанный на анализе одновременно записанных осциллограмм различных параметров. Метод использовался, в частности, для оценки взаимодействия механизмов многошпиндельных токарных автоматов, барабанных приспособлений и поворотных столов агрегатных станков (по динамическим циклограммам).  [c.127]

Барабаны автомобильные тормозные — Марки чугунов 11 — 138 - агрегатных станков — Мальтийские механизмы 9 — 95  [c.18]

Механизмы мальтийские барабанов поворота агрегатных станков 9 — 95  [c.155]

Фиг. 75. Мальтийский механизм поворота барабана агрегатного станка. Фиг. 75. Мальтийский механизм поворота барабана агрегатного станка.
Достигнутый на сегодняшний день уровень надежности унифицированных механизмов и устройств достаточно высок, что можно иллюстрировать диаграммой рис. 7, где показано распределение значений коэффициентов использования агрегатных станков Ццс, встроенных в автоматические линии. В диаграмме обобщены результаты исследования девяти автоматических линий, в которых работают более ста односторонних и двусторонних агрегатных станков. При расчете коэффициентов использования агрегатных станков, встраиваемых в автоматические линии, учитывались потери, отнесенные к одной позиции, по инструменту и оборудованию для двух силовых головок, одного механизма зажима и фиксации, а также шагового транспортера. Диаграмма рис. 8 показывает, что 26% всех агрегатных станков, встроенных в автоматические линии, имеют коэффициент использования, равный 0,99, т. е. на каждые 100 мин приходится лишь 1 мин простоя 25% всех агрегатных станков имеют коэффициент использования 0,98 и т. д.  [c.42]

Все автоматические линии из агрегатных станков имеют общность в отношении структуры рабочего цикла, единых принципов компоновки, единства важнейших целевых механизмов. Любой рабочий цикл автоматической линии из агрегатных станков обеспечивается последовательностью следующих команд ход транспортера вперед, фиксация изделий на рабочих позициях, зажим пуск силовых головок, переключение силовых головок с быстрого подвода на рабочую подачу, переключение силовых головок с рабочей подачи на быстрый отвод, останов головок в исходном положении, отжим и вывод фиксаторов. Эта цепочка последовательных команд обеспечивается силовыми головками, механизмами зажима и фиксации, шаговыми транспортерами. Работа остальных механизмов (поворотные столы и кантователи, кантователи для удаления стружки из глухих отверстий, прессы, транспортеры возврата спутников и т, д.) совмещается с работой этих механизмов, прежде всего — силовых головок.  [c.46]

Повышение надежности автоматических линий из агрегатных станков определяется совершенствованием не только агрегатных головок, но и других механизмов. Унификация конструкций транспортеров, механизмов зажима и фиксации, поворотных столов и т. д. ни в коей мере не должна означать неизменность раз и навсегда выбранных конструкций и принципиальных схем.  [c.53]

На рис. 13 приведена диаграмма надежности механизмов зажима и фиксации некоторых автоматических линий из агрегатных станков. Она содержит для каждого механизма обе характеристики надежности частоту возникновения неполадок и продолжительность их устранения. Для автоматической линии Блок 2  [c.53]

Таким образом, для автоматических линий из агрегатных станков, наряду с общими проблемами повышения надежности, унификации, стабильности инструмента, квалификации обслуживающего персонала и т. д. специфическими проблемами надежности можно считать повышение надежности переключения силовых головок, а также выбор наиболее рациональных конструктивных схем основных механизмов силовых головок, механизмов зажима и фиксации, транспортеров, поворотных столов и кантователей и т. д.  [c.56]

Важнейшей задачей теории о надежности является изучение факторов, влияющих на надежность, а также определение фактической эксплуатационной надежности действующего производства, разработка расчетных методов, позволяющих еще в стадии проектирования достоверно предвидеть уровень надежности в работе вновь создаваемого оборудования, в первую очередь — автоматических линий. Особое значение имеют исследование работоспособности действующих автоматических линий, особенно типовых (линии из агрегатных станков, линии обработки деталей типа подшипниковых колец и т. д.). Это позволяет выявить общие закономерности, определить влияние технологического, конструктивного и структурного совершенствования автоматических линий на их надежность в работе, определить достоверно уровень надежности наиболее распространенных типовых механизмов и устройств и других элементов, из которых компонуются автоматические линии. Зная надежность этих элементов, структурное построение автоматических линий, можно оценить и надежность проектируемых автоматических линий.  [c.99]

Более того, многочисленные исследования показали, что для каждого типа оборудования характер распределения потерь по видам имеет много общего. Например, в токарных многошпиндельных автоматах, встраиваемых в автоматические линии подшипниковой промышленности, обычно 45—50% составляют потери по инструменту, 30—35% — потери механизмов питания (загрузка—выгрузка), 2— 6% — потери механизмов зажима, поворота и фиксации и т. д. Аналогичное распределение потерь существует и в автоматических линиях из агрегатных станков. Зная распределение потерь по видам для данной машины, можно определить требования к надежности конкретных механизмов в машине. Подставляя в формулу (4) значение  [c.106]

Компоновка линий из отдельных автоматических сборочных механизмов и позиций ручной сборки, связанных единым транспортным устройством, аналогична компоновке линий механической обработки, состоящих из отдельных агрегатных станков. Для этих линий характерна прерывистая, прямолинейная, сквозная транспортировка собираемого узла от позиции к позиции. Чаще всего она осуществляется шаговыми транспортерами с собачками, так как для их работы требуется одно возвратно-поступательное движение. Наиболее применимы линейная и прямоугольная компоновка, замкнутая в горизонтальной плоскости. В обоих случаях возможна однопоточная или многопоточная сборка и расположение автоматических сборочных механизмов и ручных позиций как с одной, так и с обеих сторон транспортера.  [c.122]

Благодаря разрезному фиксатору в механизме шпиндельного блока выбираются зазоры в направляющих, связанные с износом направляющих поверхностей, что при больших габаритных размерах обеспечивает высокую точность фиксации и низкие величины Ajx перед ремонтом. Худшие показатели имеют механизм двойной фиксации агрегатного станка, о недостатках которого говорилось выше, и быстроходный упаковочный автомат с недостаточно отработанной конструкцией стола. Эти примеры показывают, что накопление диагностической информации по комплексным параметрам позволяет более точно регламентировать сроки эксплуатации.  [c.207]


У малых агрегатных станков надобность в зажиме стола может отсутствовать и механизм управления в связи с этим упрощается. Так, в системе управления, изображенной на фиг. 203, а, стол 2 несет на нижней своей поверхности планки 3 тл. 7, образующие радиальные пазы мальтийского креста. Источником энергии является электродвигатель 9, передающий вращение кулачку 4 через кулачковую муфту, фрикцион 10, червячную передачу 17—20 и шарнирный валик 21. При вращении кулачка 4 (фиг. 203, б) он отжимает ролик 23, установленный на рычаге 24, и тем самым поворачивает этот рычаг по часовой стрелке, удаляя при этом фиксатор 8 с помощью рычага 22. Вслед за этим ролик 5 входит в ближайший паз мальтийского креста и поворачивает стол на планшайбе 1 вокруг оси 6. В конце поворота кулачок дает возможность пружине (на схеме не показана) возвратить фиксатор в исходное положение. 366  [c.366]

Он разделил все многопозиционные машины по принципу действия на три вида машины последовательного действия ( последовательного агрегатирования ), в которых концентрируются разноименные операции, последовательно выполняемые при обработке каждого изделия (многошпиндельные токарные автоматы и нолуавтоматы, многопозиционные агрегатные станки и др.) машины параллельного действия, выполняюш ие одноименные операции, при этом каждая позиция должна иметь полный комплект механизмов и инструмента (роторные и конвейерные автоматы и др.) машины последовательно-па раллельного или смешанного действия, производящие и разноименные и одноименные операции (в машине имеется р параллельных потоков обработки, в каждом из которых технологический процесс дифференцирован па q частей). Последний вид машин является наиболее общим при р = 1 (один потоку получаем машину последовательного действия при д = 1 (каждое изделие проходит только через одну рабочую позицию) — машину параллельного действия.  [c.53]

Аналогичный расчет длительности холостых ходов затруднителен, так как конструктивная проработка механизмов загрузки и транспортирования зажима и фиксации детали, ее поворота и др. отсутствует. Однако можно использовать соотношение длительности холостых и рабочих ходов tjtp, которое относительно стабильно. Так, в линиях из токарных многошпиндельных автоматов его можно принимать 0,05—0,10, в линиях из агрегатных станков 0,25—0,35, в роторных автоматических линиях 1,0—1,5, в роторно-конвейерных линиях 0,20—0,40, для оборудования с ЧПУ 0,35—0,50.  [c.202]

Механизмы позиционирования с фиксацией. Увеличение концентрации обработки в переналаживаемом оборудовании, автоматизация смены инструмента и их блоков, применение спутников, создание разветвленных систем для их транспортировки и установки требуют использования механизмов позиционирования с фиксацией. Рассмотрим более подробно поворотно-фиксирую- щие механизмы, получившие особенно широкое применение в автоматическом оборудовании. Они используются в токарных автоматах для позиционирования шпиндельных блоков, многопозиционных агрегатных станках для поворота и фиксации столов и барабанных приспособлений, станках с ЧПУ для поворота револьверных головок, магазинов, делительных столов, а также в манипуляторах для смены инструмента. За последнее время и для смены многошпиндельных головок при последовательной обработке, на однопозиционных и агрегатных станках группы различных деталей также все чаще применяются столы с поворотно-фикси-рующими устройствами. К ним предъявляются те же требования, что и к механизмам позиционирования. Отличие заключается в том, что точность позиционирования здесь зависит в основном от механизма фиксации, а при прерывистом повороте надо создать благоприятные условия для фиксации и ограничить динамические нагрузки с целью увеличения долговечности деталей и уменьшения погрешности позиционирования. Быстроходность и быстродействие при этом являются наиболее важными общими характеристиками всего поворотно-фиксирующего устройства и определяются в значительной степени видом закона движения (рис. 1.2), моментом инерции поворачиваемых масс, координацией поворота и фиксации и в меньшей степени колебаниями, возникающими при фиксации. На общую длительность цикла работы поворотно-фиксирующего механизма оказывает существенное влияние работа устройств освобождения опор и зажима поворачиваемого узла, что будет рассмотрено ниже. Те же факторы существенны и для случая прерывистого поступательного движения с фиксацией конечных положений. Исследование характеристик большого числа  [c.28]

Для сферических (пространственных) мальтийских механизмов Сгр = Ai-u при 2к < 8, Сгр = Auui при > 8, где 2к—число пазов креста, Л1-11, i-iii —коэффициенты, величины которых зависят от числа пазов креста и типа механизма. Граничные величины коэффициентов Сгр сведены в табл. 14. В работах [34, 43—45] было показано, что кинетостатические методы дают достаточно точные результаты при расчете ряда узлов агрегатных станков и многошпиндельных токарных автоматов.  [c.40]

Кулачково-цевочные (улитные) поворотно-фи ксирующие механизмы получили широкое применение в электровакуумных, сборочных, упаковочных, расфасовочных, стекольных, сварочных, спичечных автоматах, в прессах, агрегатных станках, конвейерах автоматических линий, печатных машинах и др. В большинстве случаев они применяются при большом числе позиций Zq — 8—72 (чаще всего 2о = 12). Наибольшее распространение они получили в поворотных столах средних размеров (D = 0,3—1,0 м). Однако в отдельных конструкциях диаметр карусели доходит до 5,5 м. В первом приближении зависимость диаметра от числа позиций может быть принята линейной  [c.62]

На рис. 34 приведены осциллограммы угловой скорости о) планшайбы и давления в полости реверса Ррев гидромотора поворотного стола агрегатного станка. Осциллограммы 1 и 2 иллюстрируют характерные дефекты. На участке в — г осциллограммы / наблюдаются резкое падение скорости и изменение давления по сравнению с осциллограммой 3, записанными при исследовании исправного стола. Осциллограммы 2 записаны у стола с двумя дефектами неправильно отрегулированным давлением разгрузки, приводящим к значительным колебаниям скорости планшайбы в начале поворота (участок а — б), и при реверсе (участок г — д). Кроме того, у этого стола неправильно отрегулирован путь реверса — поворот оканчивается при большой скорости планшайбы, что вызывает увеличение динамических нагрузок на механизм фиксации и понижение точности фиксации.  [c.132]

Следует подчеркнуть, что на предприятиях автомобильной промышленности, где работают большинство автоматических линий из агрегатных станков, производственная программа выпуска имеет прогрессивно возрастающий характер. Автоматические линии по проектной мощности строятся сразу с полным комплектом механизмов и устройств для выпуска, который понадобится только через 8—10 лет, поэтому в первый период эксплуатацип они недогружены. Это приводит к увеличению себестоимости выпускаемой продукции, увеличению сроков окупаемости и т. д., так как амортизационные отчисления, фонд заработной платы наладчиков, ремонтные расходы от масштабов выпуска практически не зависят и приходятся на малое количество выпущенной продукции. Высокие эксплуатационные по-  [c.35]

Нарезание резьб на агрегатных станках производят с принудительной подачей щпин-деля с помощью механизма подачи (обгонной муфты) или резьбовых копиров. Качающиеся пружинные патроны для метчиков (рис 23) обеспечивают самозатягивание инструмента,  [c.462]

Таким образом, центроколонные агрегатные станки можно характеризовать как машины-автоматы, обладающие большой конструктивно-технологической маневренностью. При одинаковой производительности такие станки по сравнению с автоматическими многопозиционными линиями (имеющими сложные механизмы прямолинейного транспорта и фиксации приспособлений Б позициях), обладают большей надежностью в эксплуатации и меньшей трудоемкостью и металлоемкостью при изготовлении.  [c.108]

Каждая операция должна быть рассчитана на выполнение только за один установ. Автоматическое выполнение второго установа требует сложного механизма и не практикуется. Изменение положения заготовки в рабочей зоне станка с целью обработки ее с разных сторон осуществимо лишь как изменение позиций заготовки. Иногда это оправдывается в операциях, выполняемых путем вращения инструмента при неподвижной детали (станки сверлильные, расточные, фрезерные головки с подвижным инструментом на агрегатных станках и т. п.), но исключено для операций, выполняемых с вращением заготовки (станки типа токарных, круглошлифовальных и т. п.).  [c.159]

На фиг, 41 показан стол, изготовленный Харьковским заводом БШС для выпускаемых им агрегатных станков с плоскокулачковыми механизмами подачи головок.  [c.76]


Смотреть страницы где упоминается термин 279 —Механизмы агрегатных станков : [c.173]    [c.145]    [c.83]    [c.5]    [c.132]    [c.143]    [c.35]    [c.42]    [c.166]   
Справочник технолога машиностроителя Том 2 Издание 2 (1963) -- [ c.285 ]



ПОИСК



Барабаны агрегатных станков - Мальтийские механизмы

Квалиметрическая оценка качества и диагностирование механизмов многопозиционных агрегатных станков и автоматических линий (А. К. Алешин, Векилов, Е. Г. Нахапетян)

Механизм станка

Механизмы из агрегатных станков — Удельная

Механизмы мальтийские барабанов поворота агрегатных станков

Надежность типовых механизмов автоматических линий из агрегатных станков

Станок агрегатный



© 2025 Mash-xxl.info Реклама на сайте