Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зона термического влияния, строени

Защитные газы см. Газы защитные Зоны несплавления 267 Зона термического влияния, строение 91-95  [c.760]

Многослойная сварка ввиду многократного воздействия термического цикла сварки на основной металл в околошовной зоне изменяет строение и структуру зоны термического влияния. При сварке длинными участками после каждого последующего прохода предыдущий шов подвергается своеобразному отпуску.  [c.212]

На участке 1 металл, который находился в расплавленном состоянии, затвердевая, образует сварной шов, имеющий литую структуру из столбчатых кристаллов. Грубая столбчатая структура металла шва является неблагоприятной, так как снижает прочность и пластичность металла. Зона термического влияния имеет несколько структурных участков, отличающихся формой и строением зерна, вызванных различной температурой нагрева в пределах 1500—450° С.  [c.29]


Процесс сварки сопровождается интенсивным термодеформационным воздействием на металл. Высокие температуры нагрева, неравновесные условия кристаллизации шва, высоко- и низкотемпературная пластическая деформация, значительная химическая неоднородность металла шва оказывают большое влияние на образование и перераспределение дефектов кристаллического строения в шве и зоне термического влияния.  [c.473]

Микроисследованием можно выявить строение металла точки и зоны термического влияния.  [c.441]

Свойства зоны легирования зависят от концентрации легирующих элементов и получения фаз различной степени стабильности и дисперсности, образующихся в процессе охлаждения. Строение и состав зоны термического влияния определяются режимом лазерного облучения плотностью мощности излучения, временем его действия, числом импульсов, а также концентрацией легирующих компонентов в обмазке.  [c.133]

Рис. 6.2. Строение зоны термического влияния сварного шва при дуговой сварке низкоуглеродистой и низколегированной сталей Рис. 6.2. Строение зоны термического влияния сварного шва при дуговой сварке низкоуглеродистой и низколегированной сталей
Многослойная сварка ввиду многократного воздействия термического цикла сварки на основной металл в околошовной зоне изменяет строение и структуру зоны термического влияния. При сварке длинными участками после каждого последующего прохода предыдущий шов подвергается своеобразному отпуску. При сварке короткими участками шов и околошовная зона длительное время находятся в нагретом состоянии. Помимо изменения структур, это увеличивает и протяженность зоны термического влияния.  [c.260]

Зона термического влияния. Структура отпуска мельче и не имеет игольчатое строение. 100 1, (9) табл. 2.4.  [c.37]

Угловой шов, соединяющий заготовку из деформированного сплава (слева) с отливкой (справа). Для отливки характерна грубая структура игольчатого строения. Структура сварного шва и отливки одинакова. В зоне термического влияния деформированного металла размер зерна увеличился. 2 1,  [c.103]

Начало зоны термического влияния б неполностью рекристаллизован-пом металле. Увеличение зерен и начинающееся игольчатое строение. 200 1,  [c.103]

Зона термического влияния. Кристаллы увеличиваются. Вследствие аллотропического превращения образуется игольчатое и пластинчатое строение. 200 1, (25) табл. 2.4.  [c.105]

Перегрев — образование металла с крупнозернистым строением структуры в зоне термического влияния от пламени горелки. При перегреве повышается хруп-кость металла, поэтому такой металл плохо переносит ударные нагрузки. Причинами перегрева свариваемого металла при газовой сварке являются малая скорость сварки при относительно большой мощности сварочной горелки применение для сварки горючих газов с низкой температурой пламени, что замедляет процесс сварки.  [c.174]


Атомарный водород, имеющий малый диаметр, проникая в металл по границам раздела фаз и несплошностям, скапливается в порах ферритной матрицы. Дальнейшее накопление водорода приводит к его молизации, сопровождающейся возникновением повышенного давления в порах. На процесс диффузии водорода влияют поле напряжений, градиент температуры и дефектность строения металла. При неблагоприятном сочетании этих факторов в металле происходит сероводородное растрескивание и расслоение, которое может возникать внутри конструкции вдалеке от ее поверхности. Склонность к сероводородному растрескиванию под напряжением (СРН) определяется особенностями структуры металла наличием структурных неоднородностей, количеством и распределением неметаллических включений, химическим составом. СРН более характерно для высокопрочных сталей аустенитного и аустенитно-мартенситного классов и возникает чаще всего в зонах термического влияния сварных швов. Сероводородному расслоению подвергаются, как правило, сосуды, аппараты и трубопроводы из углеродистых и низколегированных сталей в отдельных случаях может происходить СРН сварных соединений.  [c.188]

Мерой борьбы с появлением внутренних напряжений является термическая обработка нормализация для углеродистой стали и закалка с высоким отпуском для специальной стали. После правильно проведенной термической обработки сварной шоз и зоны влияния приобретают мелкозернистое строение, а внутренние напряжения становятся минимальными. При электродуговой сварке зона термического влияния в каждую сторону от шва достигает 12 мм, а при газовой сварке — 30 мм. Благодаря указанному преимуществу электродуговая сварка широко применяется в промышленности. Сварка цветных металлов и сплавов не вызывает затруднений, однако необходимо учитывать легкую окисляемость металла, значительный коэффициент линейного расширения и тугоплавкость образующихся окислов.  [c.295]

Строение сварного шва после затвердевания и распределения температуры малоуглеродистой стали показаны на рис. 152. Наплавленный металл 2 получается в результате перевода присадочного и частично основного металлов в жидкое состояние, образования жидкой ванночки и последующего затвердевания, в процессе которого расплавленный металл соединяется с основным 1. В узкой зоне сплавления 3 кристаллизуются зерна, принадлежащие основному и наплавленному металлу. Во всяком сварном шве образуется зона термического влияния 4, которая располагается в толще основного металла. В этой зоне под влиянием быстрого нагрева и охлаждения в процессе сварки изменяется лишь структура металла, а его химический состав остается неизменным.  [c.301]

Рис. 152. Строение сварочного шва (а) и структурные превращения малоуглеродистой стали в зоне термического влияния (б) Рис. 152. Строение сварочного шва (а) и структурные превращения малоуглеродистой стали в зоне термического влияния (б)
Главная особенность строения зоны термического влияния сплавов с полиморфным превращением (например, сталей,  [c.12]

Вся зона основного металла, в которой в результате нагрева и охлаждения происходит изменение структуры и свойств, называется зоной термического влияния. Ширина ее ограничивается участком с температурой около 100° С. В зависимости от способа сварки она может быть очень малой (до 1 мм или до 40—50 мм). Строение зоны термического влияния для углеродистой стали показано на рис. 311.  [c.489]

В случае резки высоколегированных хромистых сталей, подверженных закалке на воздухе в кромках реза, из-за неоднородного строения зоны термического влияния возникают остаточные напряжения, величина которых возрастает с увеличением толщины разрезаемого металла, содержания углерода и легирующих элементов. Эти напряжения могут вызвать образование трещин. Следовательно, чтобы устранить возможность образования трещин при резке нержавеющих сталей необходимо свести к минимуму глубину зоны термического влияния и возможность выпадения карбидов хрома в металле, примыкающем к поверхности реза.  [c.24]

Фиг. 287. Строение зоны термического влияния при сварке низкоуглеродистой стали. Фиг. 287. Строение зоны термического влияния при сварке низкоуглеродистой стали.
На макрошлифах выявляют границы шва и зоны термического влияния, макроскопическое строение сварного шва, размеры и направление кристаллитов, а также дефекты в сварном шве.  [c.689]


Сварное соединение (рис. 15) можно разделить на три зоны, отличающиеся друг от друга структурным строением металла зона наплавленного металла зона термического влияния зона основного металла.  [c.41]

Трубы с наплавленными поверхностями кромок подвергаются термообработке (обычно отпуску) с целью восстановления свойств зоны термического влияния перлитной стали и смягчения переходных структур зоны сплавления перлита с аустенитом. При сварке аустенитными электродами с повышенным содержанием никеля, шов, как правило, имеет полностью аустенитную структуру с круп-нодендритиым строением. В результате этого металл шва в процессе кристаллизации, в большей мере чем металл шва с аустенитно-ферритной или аустенитно-карбидной структурой, склонен к образованию горячих трещин и надрывов [1].  [c.409]

Микроструктура сплава АМг полиэдрическая, состоящая из кристаллов твердого раствора магния и алюминия Al(Mg), поэтому он при отжиге склонен к образованию крупнокристаллического строения. При сварке этот сплав дает прочные швы и обнаруживает малую разницу в механических свойствах зоны термического влияния и основного материала. Следует обратить внимание на исключительно высокий предел усталости сплава АМг, который даже для отожженного материала составляет 12,5 кГ1мм . Сплав АМг широко применяется для изготовления штампованных сварных изделий, от которых требуют сравнительно высоких механических свойств и высокой коррозионной стойкости.  [c.91]

В зависимости от температуры нагрева упрочненная зона может в общем случае состоять из трех или двух слоев. Первый слой с температурой нагрева выше температуры плавления имеет явно выраженную дендритную структуру. Оси дендритов при этом растут перпендикулярно границе раздела в направлении отвода теплоты в тело детали. Между оплавленным слоем и следующей за ним зоной термического влияния существует четкая 1 раница. Зона термического влияния обычно состоит из белого и переходного слоев. Белый слой представляет собой светлую нетравящуюся полосу. Предполагают, что этот слой имеет высокую концентрацию азота за счет высокотемпературного насыщения азотом воздуха. Вследствие высокой скорости охлаждения эта зона имеет закаленную структуру, строение которой зависит от концентрации углерода. В закаленном слое технш1ески чистого железа происходит измельчение зерна феррита (от 50 до 10—15 мкм), а в отдельных зернах образуется пакетный мартенсит с развитой блочной структурой, имеющей невысокую твердость. В малоуглеродистой стали эта зона состоит из пакетного мартенсита, а в среднеуглеродистых сталях — из пакетного и пластинчатого мартенсита с небольшим количеством остаточного аустенита, в эвтектоидной стали эта зона представляет пластинчатый высокодисперсный мартенсит с 20% остаточного аустенита. С увеличением концентрации углерода в стали содержание остаточного аустенита возрастает, что вызывает снижение твердости этой зоны. Второй слой зоны термического влияния является переходным к исходной структуре. У доэвтектоидной стали он состоит из феррита и мартенсита.  [c.132]

Строение сварного соединения, обусловленное металлургическими процессами сварки и неравномерным нафевом основного металла, характеризуется зонами литым металлом шва МШ, зоной (фаницей) сплавления ЗС сварного шва с основным металлом, зоной термического влияния ЗТВ и основным металлом ОМ, не затронутым нафевом, вызывающим структурные изменения (рис. 1.12).  [c.37]

При газовой сварке более медленный нафев по сравнению с дуговой сваркой приводит к значительному росту нерасплавившихся зерен основного металла, прилегающих к фанице сплавления. Начинающаяся от них кристаллизация расплавленного металла сварочной ванны способствует крупнозернистому строению металла шва. Этому способствуют и умеренные способы охлаждения. Протяженность зоны термического влияния при газовой сварке значительно больше, чем при дуговой (до 28 мм). Поэтому и ширина различных участков зоны термического влияния больше.  [c.261]

Приведенные данные показывают, что превращение б -> у в сварных швах идет сравнительно медленно. Поэтому не приходится ожидать аустенитизации структуры двухфазных сварных швов в процессе многослойной сварки. При многослойной сварке аустенитной стали Х18Н12М2Т в зоне термического влияния верхнего слоя, располагающейся в нижележащем слое, превращение б 7 успевает произойти лишь частично (рис. 41). В процессе многопроходной сварки, ввиду кратковременности нагрева нижележащего слоя до высоких температур, превращение у б также не успевает произойти. Вместе с тем, при сварке катаных аусте-нитных сталей типа 18-8, имеющих в состоянии поставки однофазную структуру, но изготовленных из слитка с двухфазным строением, сварочный термический цикл может вызвать появление высокотемпературного феррита (рис. 41, в, г).  [c.135]

Панорамный снимок структуры от начала зоны термического влияния (вверху) до сварного шва (внизу). В начальных участках зоны термического влияния растворяются только карбиды, располагающиеся по границам зерен перлита. При охлаждении там образуется мартенсит. По мере приближения к шву растворяются все карбиды и структура становится чисто мартеиситной. Мартенсит в шве имеет более грубое строение, чем в зоне термического вли5н1ия. Видна закалочная трещина. 100 1, (9) табл. 2.4.  [c.53]

Большинство неразъемных соединений получают сваркой плавлением с использованием мощного теплового источника — электрической дуги. При этом основной металл и электрод плавятся, образуя жидкую ванну. Температуры сварочной ванны и примыкающего металла достигают высоких значений. После кратковременного нагрева следует достаточно быстрое охлаждение, т.е. возникает своеобразный термический цикл, который определяет строение сварного шва и околошовной зоны. При сварке углеродистой стали структура околошовной зоны (зоны термического влияния) формируется в соответствии с диаграммой состояния Fe — ГезС (рис. 10.2). Шов имеет структуру литого металла, которая образуется в процессе первичной кристаллизации. Из-за направленного отвода теплоты кристаллы здесь приобретают столбчатую форму, вытянутую перпендикулярно линии сплавления.  [c.288]

Микроструктура основного металла состоит из феррита и перлита (рис. 5.43, а). Зона термического влияния образована зернами феррита и перлита, карбидами, расположенными преимущественно по границам зерен (рис. 5.43, б, в). Металл сварного шва имеет столбчатое строение со структурой верхнего бейнита и видманштеттова фер-  [c.263]

При осмотре верхнего сварного (с хордовым п1вом) днища десорбера К-7 из аустенито-ферритной стали 08Х22Н6Т обнаружили восемь трещин. Две (длиной 300 и 400 мм с максимальным раскрытием 0,5 мм) были выявлены в зоне термического влияния сварного шва штуцера диаметром 350 мм, они уходили в основной металл трещина в зоне термического влияния Dy 100 на наружной поверхности днища имела длину 120 мм с максимальным раскрытием 0,5 мм и глубину 2-3 мм (рис. 5.83) трещина в зоне термического влияния штуцера диаметром 50 мм была длиной 60 мм с максимальным раскрытием 0,4 мм. Еще четыре трещины были обнаружены в околошовной зоне кольцевого шва приварки днища к обечайке. По виду излома все трещины имели кристаллическое строение, следы пластической деформации вдоль их траектории трещины отсутствовали.  [c.324]


Особенностями металлургических процессов при сварке плавлением являются весьма высокие температуры и кратковременность всех процессов. На рис. 153 показана структура зоны влияния (строение сварного шва) после затвердевания и распределение температуры в малоуглеродистой стали в зоне термического влияния. Наплавленный металл 1 (участок 0—1) имеет столбчатое (дендритное) строение, характерное для литой стали при ее медленном затвердевании. Если наплавленный металл или соседний с ним участок 1 был сильно перегрет, то при охлаждении на участке 2 зерна основного металла (низкоуглеродистой стали) имеют игольчатую форму, образуя грубоигольчатую структуру. Этот участок имеет крупнозернистую структуру и обладает наибольшей хрупкостью и весьма низкими механическими свойствами. На участке 3 температура металла не превышает 1000° С. Здесь имеет место нормализация, структура получается мелкозернистой с повышенными механическими свойствами по сравнению с основным металлом. На участке 4 происходит неполная перекристаллизация стали, так как температура нагрева находилась между критическими точками Ас1 и Асз. На этом Участке наряду с крупными зернами феррита образуются и мелкие зерна феррита и перлита.  [c.338]

Участок перегрева при кислородно-флюсовой резке хромоникелевых марок стали характеризуется наличием у кромки реза слабо-травящейся полосы, на которой после длительного электротравления в 10%-растворе щавелевой кислоты выявляется структура дендритного строения, характерная для литого металла. При резке сталей аустенитного класса, нестабилизированных титаном или ниобием, зона термического влияния характеризуется также тем, что в участке перегрева имеет место выпадение карбидов хрома.  [c.43]

Структура металла вдоль линии реза отлична от структуры основного металла. В малоуглеродистых сталях в зоне перегрева наблюдается рост зерна, а у кромок реза видманштет-това структура. Участки более удаленные от линии реза, но расположенные в зоне термического влияния, приобретают сравнительно мелкозернистое строение, подобно структуре нормализованной стали. При резке малоуглеродистой стали структурные изменения, как правило, не оказывают существенного влияния на качество металла.  [c.72]


Смотреть страницы где упоминается термин Зона термического влияния, строени : [c.213]    [c.709]    [c.470]    [c.210]    [c.64]    [c.226]    [c.261]    [c.11]    [c.92]    [c.253]    [c.367]    [c.667]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.91 , c.95 ]



ПОИСК



28—31 — Строение

Зона термического влияния

Образование и строение зоны термического влияния

Образование и строение зоны термического влияния в сварных соединениях

Строение зоны термического влияния в сварных соединениях сталей и сплавов титана

Строение сварного соединения зона термического влияния

ТЕРМИЧЕСКАЯ Строение



© 2025 Mash-xxl.info Реклама на сайте