Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

19 — Свойства карбида кремния — Свойства

Ниже приведены свойства карбида кремния, цементированного нитридом кремния.  [c.608]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]


Физические свойства карбида кремния  [c.407]

Свойства карбида кремния (63, 67, 1011  [c.142]

Волокно карбида кремния менее реакционноспособно в алюминии по сравнению с борным волокном, поэтому карбид кремния применяется в качестве покрытия на волокнах бора (борсик). Однако большая плотность волокон из карбида кремния (на 30%) и невысокие прочностные свойства делают их менее привлекательными.  [c.425]

В книге дана характеристика естественных абразивных материалов (алмаза, корунда, граната и кремня) и подробно рассмотрены теоретические и практические вопросы производства искусственных абразивных материалов (электрокорундов, монокорунда, карбидов кремния и бора, синтетического алмаза и эльбора), имеющих широкое применение в промышленности, их свойства и состав, сырьевые материалы и особенности производственных процессов, приведена структура себестоимости одной тонны электрокорундов нормального и белого, карбидов кремния и бора, а также описаны конструкции нового оборудования, применяемого при производстве искусственных абразивных материалов.  [c.2]

Химические свойства. Карбид кремния является химически стойким веществом. Химическая устойчивость карбида кремния объясняется наличием пленки двуокиси кремния, покрывающей кристаллы Si при окислении.  [c.97]

Электрические свойства. Карбид кремния относится к группе полупроводников. Электропроводность карбида кремния, как и всех полупроводников, зависит от примесей, присутствующих (иногда в ничтожных количествах) в них, а также и от внешних воздействий. Удельное сопротивление карбида кремния лежит в пределах от 3-10 до 3-10 ом-см.  [c.98]

Зерна карбида кремния имеют острые кромки, высокую теплостойкость (около 2050°) и механическую прочность. По твердости они превосходят зерна электрокорунда и обладают большей режущей способностью. Зеленый карбид кремния примерно на 20% выше черного по своим режущим свойствам.  [c.11]

Карбид кремния (карборунд) представляет химическое соединение кремния с углеродом 8 С, получаемое так же, как и электрокорунд, в электрических печах металлургическим путем. В зависимости от состава и количества примесей различают карбид кремния черный КЧ (95—98 /о 81С) и карбид кремния зеленый КЗ (96—99% 51С). Зерна карбида кремния черного окрашены в черный или те.мно-синий цвет, а зеленого — в светло- или темно-зеленый. По свойствам обе разновидности карбида кремния близки друг к другу. Микротвердость и механическая прочность зерен карбида кремния выше, чем зерен электрокорунда, но они обладают в сравнении с ними большей хрупкостью.  [c.13]

Опишите состав и основные свойства карбида кремния.  [c.99]

Излучение света твердыми телами, находящимися в возбужденном состоянии, обнаружено улсе давно. Так, в 1907 г. Раунд наблюдал испускание света карбидом кремния, обусловленное рекомбинацией электронов и дырок. Свечение в точке контакта металлического острия с кристаллом карбида кремния обнаружил советский физик О. В. Лосев (1923) при исследовании свойств кристаллических детекторов.  [c.313]

Основные физические свойства германия, кремния, карбида кремния  [c.78]

Монокристаллы Si выращивают из расплава, из газовой фазы (сублимацией) при температуре около 2600° С, а также приготовляют другими способами. Монокристаллы карбида кремния обладают исключительно высокой химической стойкостью, низкой проводимостью и большой шириной запрещенной зоны. Благодаря этим свойствам они перспективны в качестве материалов для приборов, работающих при температуре до 500° С.  [c.189]


В случае отсутствия кислорода в реакционном объеме на поверхности образца происходит образование темного карбида кремния. Рентгеноструктурный анализ показал, что оба карбида имеют кубическую структуру типа ZnS с параметрами решетки а=4.357 А. Состав покрытия и его свойства зависят от соотношения  [c.135]

Исследования темного карбида кремния на жаростойкость показали его высокие защитные свойства. Так, при нагреве токами высокой частоты образца графита, покрытого карбидом кремния, в течение 10 час. при температуре 1600° С было обнаружено незначительное уменьшение веса образца.  [c.136]

Механические свойства композита в значительной мере зависят от степени молекулярного взаимодействия волокна со смолой на поверхности раздела. Для достижения максимальной адгезионной прочности необходимо знать природу этого взаимодействия. Тот факт, что удельная поверхность волокна небольшая, еще не означает отсутствие достаточного взаимодействия между волокном и смолой. Так, в табл. 1 показано, что композиты, армированные необработанными волокнами стекла, бора и карбида кремния с незначительной площадью адгезионного соединения, обладают высокой прочностью на сдвиг напротив, материалы, армированные  [c.263]

В следующем поколении систем с покрытиями внешний слой пиролитического углерода содержит еще и карбид металла. Обычно это карбид кремния, который обладает хорошим свойством сдерживать газообразные продукты деления.  [c.452]

Проиллюстрируем это при помощи рис. 2.1, на котором показаны волокна карбида кремния в пиролитической графитовой матрице (PG/Si — материал для высокотемпературных покрытий) при разных степенях увеличения ). На рис. 2.1,а при максимальном увеличении компоненты композита различимы каждый в отдельности. Поэтому на данном уровне рассмотрения можно говорить о свойствах каждого компонента. Волокна, например, являются хрупкими и характеризуются определенным статистическим распределением прочности и геометрией поперечного сечения. Подобная информация о составных частях материала позволяет определить  [c.35]

Предел прочности композиций, армированных волокнами углерода и карбида кремния в зависимости от давления при пропитке, изменяется по кривой с максимумом. Давление необходимо для обеспечения полной пропитки детали и создания минимального взаимодействия, достаточного для достижения оптимальной прочности связи волокна с матрицей. Однако слишком высокое давление пропитки приводит к значительному разупрочнению волокна и снижению свойств.  [c.9]

Потеря прочности волокон и композиционного материала по сравнению с расчетными значениями иногда достигает 30% например, по данным [120] волокна карбида кремния, экстрагированные из титанового композиционного материала системы титан— карбид кремния, имеют предел прочности 210 кгс/мм вместо предела 320 кгс/мм , измеренного до изготовления композиции. Наиболее существенными причинами указанного снижения свойств является химическое взаимодействие на границах раздела матрица—волокно и волокно—подложка. Причем первое имеет превалирующее значение, т. е. наиболее существенное снижение свойств наблюдается в результате растворения, образования новых фаз, охрупчивания и прочих процессов, протекающих на границе раздела матрицы с волокном.  [c.29]

Разделы 1 и 2 содержат данные о свойствах и областях применения металлических и неметаллических материалов для нагревателей. Приведена обобщенная методика определения срока службы никельхромовых и железохромоалюминиевых сплавов на воздухе и в углеродсодержащей атмосфере. Приведены характеристики и результаты испытаний нагревателей из карбида кремния, дисилицида молибдена, хромита лантана и диоксида циркония.  [c.3]

Карбид хрома СГ3О4 окисляется воздухом при 1095—1400°С, не испаряется в высоком вакууме при 1730 °С и малолетуч при 2230 °С. Карбид ванадия УС имеет теплопроводность 24,8 Вт/(м-К). Свойства карбида кремния С и нагреватели из него описаны в 2.1.  [c.282]

Одно ИЗ важнейших свойств карбида кремния - его способность к люминесценции в видимой области спектра. Излучательн рекомбинация свободных электронов и дырок и свободных экситонов в Si 1 наблюдается только при электролюминесценции р-п-переходов, созданных на основе кристаллов 3 -Si . Излучательная рекомбинация в карбиде кремния обусловливается такими акцепторными примесями, как N, А1, В, Ga, Be, S .  [c.654]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Известно, ЧТО в зависимости от назначения покрытий и для придания специальных свойств в покрытия в качестве дисперсной фазы могут добавляться твердые упрочняющие абразивные частицы (окислы циркония и алюминия, каолин, карбиды кремния, титана, вольфрама) и мягкие слоистые частицы твердых смазок (гексагональный нитрид бора, графит, дисульфид молибдена и др.). Для увеличения твердости и сопротивления истиранию в покрытие включается от 25 до 50 % неметаллических частиц, таких, как карбиды, оксиды, бориды, нитриды. Включение в покрытие дисперсных частиц влияет на водородосодержание и величину внутренних напряжений осадков.  [c.106]


Способы устранения отрицательных особенностей. Использование высоко-модульных, волокон. В целях увеличения жесткости композиционных. материалов ведутся интенсивные работы по созданию высокомодульных волокон. Наиболее распространенными в настоящее время высокомодульными волокнами, применяемыми в качестве арматуры для изготовления композиционных материалов, являются волокна бора, углерода, карбида кремния, бериллия, модуль упругости которых в 5 раз и более превышает модуль упругости стекловолокон [20, 33, 102]. Большой практический интерес вызывают также органические волокна типа PRD-49 Kevlar [113], удельная прочность и жесткость которых в 2—3 раза выше аналогичных характеристик стекловолокон [59, 113]. Появление волокон Kevlar вызвано стремлением создать легкие высокомодульные и высокопрочные волокна со стабильными свойствами при действии динамических нагрузок, резких изменений температуры и условий эксплуатации.  [c.7]

Материалы на основе углеродных волокон, вискеризованных нитевидными кристаллами карбида кремния, и эпоксидных, а также полиамидных связующих описаны в работах [19, 20, 25]. Использование указанных волокон в материалах, как показано в работе [102], приводит к резкому увеличению прочности на сдвиг, причем возрастание сдвиговой прочности пропорционально объемному содержанию нитевидных кристаллов. Влияние содержания нитевидных кристаллов на некоторые свойства при изгибе углепластиков, изготовленных на основе эпоксидного связующего Эпон 828, характеризуют данные, приведенные в табл. 7.7. Для межслойной сдвиговой прочности эти данные во многом условны. Они получены методом трехточечного изгиба образцов при //л = 3 и не характеризуют фак-  [c.215]

Испытания показали, что после 300-кратного нагрева образца со скоростью 200 град./сек. и охлаждения на воздухе покрытие карбида кремния на графите не изменяет своих защитных свойств. Это свидетельствует о том, что покрытия из карбида кремния на графите весьма стойки к тепловым ударам.  [c.136]

Еще одна заманчивая возможность изучения поверхности раздела состоит в стимулировании реакции соответствующее увеличение зоны взаимодействия облегчает измерения и исследования. Правда, в уже цитировавшейся работе Рэтлиффа и Пауэлла [30] было показано, что в системе титан — карбид кремния изменения кинетики реакции становятся заметными при толщине реакционной зоны около 10 мкм, а известно, что практический интерес представляют реакционные зоны толщиной менее 1 мкм. Однако и здесь общие критерии не могут быть предложены, поскольку интервал толщин реакционной зоны, в котором достигаются практически ценные свойства композита, зависит от системы, размера упрочнителя и многих других факторов. Ноуан и др. [27], например, пришли к выводу, что исследование реакции на поверхности раздела тонких нитевидных кристаллов окиси алюминия (несколько микрометров в диаметре) представляет почти неразрешимую проблему, хотя реакцию с волокнами окиси алюминия большого диаметра (0,25 мм) можно контролировать.  [c.38]

Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]

Судя ПО этим данным, наименьшая скорость реакции характерна для бора, далее следуют карбид кремния и окись алюмл-ния. Легирование матрицы может увеличивать или уменьшать скорость реакции. Если волокно состоит из одного элемента (бора), то количество образующегося продукта реакции, видимо, прямо пропорционально количеству прореагировавшего бора. Однако для волокон из соединений или волокон с покрытием эта зависимость не соблюдается. Небольшое количество элементов внедрения из соединений AI2O3 или Si переходит в матрицу и, растворяясь н ней, вызывает упрочнение и охрупчивание, и тем не менее скорость взаимодействия матрицы с такими волокнами выше, чем с борным волокном. Тресслер и Мур [46] отмечают, что в композите титан — окись алюминия допускается большая степень химического взаимодействия, чем в материалах титан — бор и титан — карбид кремния. Этот вопрос будет обсуждаться в гл. 4 в связи с анализом механических свойств при растяжении и в гл. 8, посвященной композитам с окисным упрочнением.  [c.125]

Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]

Поверхность раздела титан—карбид кремния характерна для систем, армированных как карбидом кремния, так и бориыми волокнами с покрытием из карбида кремния. Эти системы изучены менее подробно, чем системы титан — бор, но и теория, и эксперимент показывают, что характеристики растяжения, зависящие от свойств поверхности раздела, подчиняются в обоих случаях сходным закономерностям. Единственное систематическое исследование влияния поверхности раздела на прочность выполнено Кляйном и др. [16] на композите Ti40A—25% борсик.  [c.165]

Улучшение механических свойств наполненных полимерных материалов благодаря применению силановых аппретов наблюдается при использовании многих минеральных наполнителей (гл. 5). Наиболее эффективно аппретирование двуокиси кремния, окиси алюминия, стекла, карбида кремния и алюминия (табл. 4). Несколько хуже результаты, полученные с тальком, волластонитом, порошком железа, глиной, цирконом и фосфатом кальция. Аппретирование асбестина, асбеста, двуокиси титана и титаната калия малоэффективно обработка силанами карбоната кальция, графита и бора безрезультатна.  [c.196]


Варисторы, или элементы, чувствительные к величине напряжения, часто используют как выпрямители, грозоразрядники, а также во всех случаях, когда требуется изменение сопротивления в зависимости от напряжения. Эти элементы основаны на полупроводниках, электрическое сопротивление которых нелинейно изменяется в зависимости от напряжения постоянного тока. Изменения свойств варисторов могут быть несимметричными (селеновые или меднозакисные выпрямители) или симметричными (диски или стержни из карбида кремния).  [c.357]

Данных об облучении карбидокремниевых варисторов нет. Однако были проведены многочисленные исследования с целью определить влияние излучения на кристаллы и пленки из карбида кремния различной формы и конфигурации. Обычно карбид кремния рассматривают как полупроводник с вентильными свойствами и как таковой относят к элементам, обладающим несимметричными характеристиками. Однако элементы в виде дисков и стержней, получаемые при смешивании карбидов кремния и кальция со связующими материалами, становятся симметричными по отношению к прямым и обратным характеристикам. В работе [80] проведено детальное исследование влияния быстрых нейтронов на электрические характеристики карбида кремния. Изучено поведение в нейтронном потоке кремниевых и карбидокремниевых диодов. Результаты показали, что в условиях облучения карбид кремния более перспективен. Под действием интегрального потока 5-10 нейтрон1см прямое напряжение  [c.358]

Атомные смещения приводят к таким необратимым нарушениям в неорганических изоляционных материалах, которые проявляются в виде изменения параметров решетки, плотности, прочности и электрических свойств. Бомбардировка нейтронами кристаллических тел (AI2O3, MgO, кристаллический кварц и т. д.) приводит к расширению решетки и соответственно к уменьшению плотности. При интегральных потоках быстрых нейтронов порядка 10 —10 нейтрон 1см плотность керамических изоляторов [17], обладающих плохой или умеренной радиационной стойкостью, изменяется приблизительно на 1—6%. Из обычно используемых изоляционных материалов а-кварц является, по-видимому, наименее стойким к облучению быстрыми нейтронами, так как при интегральном потоке около 6,6-10 нейтрон/см его плотность понижается на 3,5—5% [81]. Небольшое уменьшение плотности (на 1—3%) наблюдается в карбиде кремния, окиси магния, сапфире и шпинели при интегральных потоках быстрых нейтронов порядка 10 —10 нейтрон1см [63]. Зисмани др. [72] установили, что при интегральном потоке быстрых нейтронов 2-10 нейтрон/см изменение плотности окиси магния, окиси алюминия, шпинели и форстерита составляет менее 1 %. Если под влиянием облучения быстрыми нейтронами плотность кристаллических материалов уменьшается, то в таких аморфных изоляторах, как плавленый кварц и стекло, наблюдается обратный эффект. Примак и др. [62], например, наблюдали увеличение плотности плавленого кварца на 17% при интегральных потоках выше 10 нейтрон/см .  [c.397]

Возможно, что свойства чрезвычайно важных компонент композита могут быть почти полностью скрыты в макроповедении материала, если не анализировать его с достаточной тщательностью. Например, наличие малой объемной доли кобальта как пластичного связующего в цементированном карбиде вольфрама позволяет реализовать в этом композите прочность, равную прочности самих частиц карбида вольфрама. Этот эффект объясняется значительным сглаживанием пиков микронапряжений [2]. Пластичность же не проявляется из-за того, что слои кобальта среднестатистически тонкие и их пластические деформации стеснены. Существенная (с точки зрения прочностных свойств) роль пластичности практически никак не проявляется в диаграммах нагрузка — перемещение и о(е) рассматриваемого материала. Эти зависимости при трехточечном изгибе балки и растяжении близки к линейным вплоть до разрущения. Отсюда, а также по характеру разрущения можно сделать вывод, что цементированный карбид кремния является однородным идеально упругим хрупким материалом. Только более подробный анализ позволяет выявить основную роль больщой, но скрытой пластичности кобальта и односторонность однородной упругохрупкой модели.  [c.13]


Смотреть страницы где упоминается термин 19 — Свойства карбида кремния — Свойства : [c.148]    [c.378]    [c.690]    [c.502]    [c.13]    [c.279]    [c.135]    [c.341]    [c.59]    [c.128]    [c.139]    [c.229]   
Композиционные материалы (1990) -- [ c.23 ]



ПОИСК



КАРБИД Свойства

Карбид бора — Свойства кремния

Карбид кремния

Карбид кремния — Физико-механические свойства

Карбиды

Кремний

Кремний Свойства

Свойства волокон из карбида кремния



© 2025 Mash-xxl.info Реклама на сайте