Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

469, 470 — Задачи динамические и статические 468, 469 Задачи для стержней

Вторая основная задача связана с исследованием динамической устойчивости стержней в потоке и определением критических скоростей потока. Комплексные собственные значения позволяют выяснить возможное поведение стержня при возникающих свободных колебаниях во всем диапазоне скоростей потока (от нуля до критического значения) и тем самым ответить на вопрос, какая потеря устойчивости (с ростом скорости потока) наступит, статическая (дивергенция) или динамическая (флаттер). Задачи динамической неустойчивости типа флаттера подразумевают потенциальное (без срывов) обтекание стержня (рис. 8.1,а), что имеет место только в определенном диапазоне чисел Рейнольдса. Возможны и режимы обтекания с отрывом потока и образованием за стержнем вихревой дорожки Кармана (рис. 8.1,6). Вихри срываются попеременно с поверхности стержня, резко изменяя распределение давления, действующего на стержень, что приводит к появлению периодической силы (силы Кармана), перпендикулярной направлению вектора скорости потока.  [c.234]


Собственный вес и силы инерции. Предыдущие формулы относятся к стержням постоянного сечения, нагруженным силами на концах. Может случиться, что силы распределены непрерывным образом по поверхности или объему стержня. Так, например, замурованный в стену стержень, если вытягивать его за конец, встречает сопротивление со стороны скрепляющего его со стеной цемента по всей поверхности заделки. Пример распределенной по объему силы — 9Т0 сила тяжести. При рассмотрении динамических задач о напряжениях в движущихся стержнях можно, согласно принципу Даламбера, вводить непрерывно распределенные по объему силы инерции. Во многих случаях ввиду малости деформаций достаточно определять кинематические элементы движения так, как если бы тело было абсолютно жестким. Таким образом ускорения, а следовательно, и силы инерции могут быть найдены заранее. Способ решения таких задач, которые можно назвать квазистатическими, ничем не отличается от способа решения статических задач сопротивления материалов. Специфика динамических задач обнаруживается тогда, когда нельзя пренебречь силами инерции, происходящими от движения, связанного с деформацией. Таковы, например, задачи о колебаниях стержней и о действии ударной нагрузки.  [c.38]

Точная оценка влияния массы стерлсня представляет собой весьма трудоемкую задачу вследствие сложного закона изменения скоростей по длине стержня. Однако, если базироваться на приведенном выше допущении о подобии динамических перемещений статически.м и заменить стержень с распределенной массой свободным телом с приведенной массой, сосредоточенной в точке удара и обладающей той же кинетической энергией и тем же количеством движения, что и весь стержень в момент удара, то данная задача решается весьма просто.  [c.465]


Смотреть страницы где упоминается термин 469, 470 — Задачи динамические и статические 468, 469 Задачи для стержней : [c.414]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.473 ]



ПОИСК



469, 470 — Задачи динамические и статические

Задача статическая

Задачи динамические

Задачи для стержней



© 2025 Mash-xxl.info Реклама на сайте