Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор напряженного состояни

Если взамен исходной системы осей х, у, г выбрать какую-то новую систему, компоненты тензора изменятся, т. е. значения а ., Оу. .. будут иными. Однако, сам тензор напряженного состояния остается тем же. Сказанное легко поясняется на примере вектора, показанного па рис. 272.  [c.235]

При равномерной (однородной) деформации напряженное состояние во всех точках тела одинако.зо, компоненты тензора Напряженного состояния и направления главных осей не изменяются при переходе от одной точки тела к другой, плоскости и прямые линии в теле не изменяются.  [c.190]


Тензор напряженного состояния  [c.122]

Для того чтобы судить о виде напряженного состояния, нужно выделить из тензора напряженного состояния шаровой тензор и по знакам составляющих девиатора установить этот вид. В частности, когда одна из этих трех составляющих положительна, а две другие отрицательны (причем каждая из этих двух последних по абсолютной величине меньше положительной), то мы имеем растяжение.  [c.123]

Вычтем этот тензор из тензора напряженного состояния точки, что изображается так  [c.86]

Тензор )(, называется девиатором н а п р я ж е н и й. Таким образом, в общем случае тензор напряженного состояния определяется суммой шарового тензора и девиатора напряжений.  [c.86]

Известным примером тензора может служить тензор напряжений, который может быть введен следующим образом. Один из методов обнаружения напряженного состояния в точке тела состоит в том, что делается разрез (разумеется, мысленный) через эту точку и наблюдается, с какой силой каждая из двух частей тела воздействует на другую. (Эта сила однозначно определяется как сила, которая должна быть приложена к поверхности разреза с тем, чтобы сохранить условия, которые существовали перед тем, как  [c.20]

Для жидкостей с постоянной плотностью реологическое уравнение состояния определяет тензор напряжений лишь с точностью до произвольного аддитивного изотропного тензора. Тензор полных напряжений Т можно разбить на следующие два слагаемых  [c.47]

В литературе встречается довольно много уравнений состояния, не подчиняющихся принципу объективности поведения материала. В частности, некоторые работы по линейной вязкоупругости страдают от этого недостатка. Это весьма прискорбно, потому что имеющиеся экспериментальные данные оказываются бесполезными, поскольку эти результаты были опубликованы в форме, полученной после их обработки на основе неинвариантного (а следовательно, физически невозможного) уравнения состояния. В частности, в гл. 6 мы увидим, что в случае уравнений состояния, включающих производные по времени от тензора напряжений, удовлетворять указанному принципу следует с особой тщательностью.  [c.59]

После установления принципа объективности поведения материала можно проанализировать нелинейное реологическое уравнение состояния, устанавливающее соответствие между тензором напряжений т и тензором растяжения D )  [c.63]

Неадекватность уравнения (2-3.1) в отношении корректного предсказания поведения реальных материалов даже в течениях столь простого типа, как линейное течение Куэтта, выдвигает проблему построения реологического уравнения состояния более общего вида, в котором тензор напряжений т уже не является однозначно определенной функцией тензора растяжения.  [c.73]

Уравнения второго типа можно представить себе как частные случаи уравнения (4-3.12) для простой жидкости, когда функционал определяется при помощи одного или нескольких интегралов. Уравнения состояния как дифференциального, так и интегрального тина разрешены относительно тензора напряжений. Этого нельзя сказать об уравнениях состояния релаксационного типа. Действительно, они содержат по меньшей мере одну производную по времени от тензора напряжений. Скорость изменения (или релаксация) напряжений, фигурирующая в уравнениях такого типа, дает название этому типу уравнений.  [c.211]


Из этого уравнения следует явно, что для уравнения состояния, подобного уравнению (6-4.4), величина tr т не постоянна во времени, а зависит от D (t) и, следовательно, от истории движения. Уравнение (6-4.24) указывает также на то, каким образом нужно модифицировать (6-4.4) для того, чтобы получить уравнение состояния с тензором напряжений, всегда имеющим нулевой след. В левой части уравнения (6-4.4) мы должны добавить член  [c.236]

Очевидно, что включение члена, определяемого уравнением (6-4.25), эквивалентно выбору значения Ь = — /3 а в общем операторе временного дифференцирования, определяемом уравнением (6-4.3). Очевидно также, что при таком выборе значение с становится несущественным, поскольку содержащий его член обращается в тождественный нуль. Было предложено несколько релаксационных уравнений состояния, построенных таким образом, что напряжение определялось в виде тензора с нулевым следом. Следует заметить, однако, что добавление к заданному релаксационному уравнению состояния членов типа (6-4.25) полностью изменяет скорректированное уравнение по сравнению с исходным. А именно, это не только преобразует рассматриваемый ранее тензор напряжений к тензору с нулевым следом, но и полностью изменяет реологическое поведение. Если, например, уравнение (6-4.12) предсказывает постоянство сдвиговой вязкости (см. (6-4.8)), то модификация уравнения (6-4.12) к виду уравнения с бесследным тензором, т. е. к виду  [c.237]

Это, однако, несправедливо для неньютоновских жидкостей. Действительно, для произвольного уравнения состояния, отличного от ньютоновского, уравнение (7-1.11) уже не будет означать, что дивергенция тензора напряжений равна нулю для несжимаемых жидкостей, и, следовательно, безвихревые поля течения, удовлетворяющие уравнению (7-1.6), не будут решениями полных уравнений движения. Следовательно, результаты классической гидромеханики применимы к неньютоновским жидкостям только в рамках ограничений, налагаемых неравенством (7-1.7).  [c.257]

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]

Уравнения состояния, задающие тензор напряжения среды о и внутреннюю энергию и, записываются в предположении локального термодинамического равновесия, когда в каждой точке можно определить температуру среды Т. При этом считается, что тензор скорости деформации е Р определяется полем барицентрических скоростей смеси о  [c.22]

Можно показать, что совокупность напряжений на гранях такого элементарного параллелепипеда полностью характеризует напряженное состояние в точке нагруженного тела. Эта совокупность напряжений называется тензором напряжений.  [c.160]

Путем некоторых преобразований можно показать, что шести полученных компонентов деформации достаточно для того, чтобы определить линейные и угловые деформации в данной точке в любых направлениях. Таким образом, деформированное состояние в точке определяется шестью компонентами и, так же как и напряженное состояние, представляет собой тензор.  [c.251]

Тензор (2.13) определен для деформированного состояния тела в момент времени t в окрестности точки х и называется тензором напряжений Эйлера. Тензор напряжений (2.13) может быть представлен также в матричной форме в виде вектора-столбца  [c.44]

Круги напряжений Мора. Удобное двумерное графическое представление трехмерного напряженного состояния в точке тела было предложено О. Мором . Возьмем вновь в качестве координатных осей главные оси тензора напряжений в данной точке тела. Рассечем материальную точку тела (рис. 2.8, а) плоскостью, параллельной аз, и рассмотрим равновесие отсеченной части (рис.  [c.50]

Помимо ориентации трех главных осей тензора напряжений направляющий тензор определяет также вид напряженного состояния, т. е., например, параметр Лоде либо угол вида напряженного состояния ф. Действительно, для определения главных направлений направляющего тензора согласно (2.43) имеем систему уравнений  [c.56]

Условие пластичности (2.79) Мизеса не зависит от третьего инварианта тензора-девиатора, т. е. от вида напряженного состояния.  [c.58]


Компоненты тензора деформаций при плоском напряженном состоянии d2f 1 ( 2 f d  [c.78]

На поверхности пластины известны компоненты тензора деформаций e,l = 0,6 10- 622=0,1 10- ei2 = —0,05-10 . Используя выражения закона Гука для плоского напряженного состояния, вычислить соответствующие напряжения 011, 022, 015, если =2-10 МПа,  [c.129]

Таким образом, тензоры напряжений и деформаций в случае плоского напряженного состояния имеют вид  [c.133]

Отметим также, что связи (1.117) — (1.119) позволяют считать что напряженное состояние в точке определяется одним лишь тензором напряжений, например тензором t все другие получаются из t с помощью линейных преобразований и замен переменных х = х(а), а = а х)  [c.25]

Рассмотрим деформируемое тело, в момент времени t занимающее область Q, и зафиксируем материальную частицу с координатами а в начальный момент времени / = /о. Пусть напряженное состояние в окрестности этой частицы в момент времени t to определяется тензором напряжений i=t(a, t).  [c.36]

Предположим, что сопротивление среды деформированию не зависит от направления деформирования, т. е. среда изотропна. Это означает, что если в теле создать определенное состояние деформации, описываемое тензором деформации е,у, а затем систему координат подвергнуть произвольному преобразованию (для простоты речь идет о декартовых системах) и после этого в теле создать состояние деформации, по отношению к новой системе описываемое теми же компонентами тензора деформации, что и в первом случае, то компоненты тензора напряжений в обоих случаях совпадут.  [c.47]

Если взамен исходной системы Oxyz выбрать новую систему, компоненты тензора изменятся, т.е. значения Оу,. .. будут иными, однако сам тензор напряженного состояния останется тем же. Сказанное можно легко пояснить на примере вектора, показанного на рис. 7.6.  [c.306]

Необходимо обсудить роль динамического уравнения по отношению как к а, так ъкр. Предположим, что поле скорости определено и известно реологическое уравнение состояния для данной жидкости. Если это реологическое уравнение принадлежит к тину уравнений с девиаторным тензором напряжений, то т вычисляется на основании известной кинематики и далее из динамического уравнения (уравнение (1-7.13)) определяется Vp. Следовательно, поле давлений вычисляется с точностью до произвольной аддитивной постоянной. Если же, как это бывает наиболее часто, реологическое уравнение состояния принадлежит к типу уравнений, содержащих недевиаторные избыточные напряжения, то тензор т определяется по вычисленному т из уравнения (1-8.4), а Vp — из уравнения (1-7.13), как и ранее.  [c.47]

Очевидно, что первым шагом в этом направлении является предположение о нелинейном характере зависимости между тензорами напряжений и растяжения. Однако, перед тем как рассматривать это предположение, уместно проанализировать требования инвариантности для уравнений состояния, чтобы можно было избежать физически неосуществимых форм этого уравнения. Следуюпщй раздел посвящен такому анализу.  [c.57]

Следуя Трусделлу и Ноллу [1], мы подразделяем уравнения состояния на три тина дифференциальные, интегральные и релаксационные. К первому типу принадлежат уравнения, определяющие тензор напряжений как функцию дифференциальных кинематических величин, относящихся лишь к моменту наблюдения. Тем не менее эти уравнения отражают концепцию памяти жидкости, поскольку деформационные тензоры более высокого порядка содержат некоторую информацию о прошлых деформациях в смысле, уже обсуждавшемся в разд. 3-2.  [c.211]

Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Будем полагать, что в момент начала процесса неустойчивого деформирования за счет наличия пор нагруженность материала такова, что его реология начинает подчиняться закону упругопластического, а не упруговязкого деформирования. При этом принимается, как и в подразделе 2.2.2, что локальное изменение деформации в характерном сечении не приводит к изменению соотношения компонент тензора напряжений (а следовательно, и параметров qn = a fOi и q,n omfoi) в структурном элементе. Окончательно условие достижения критической деформации при межзеренном разрушении формулируется аналогично условию предельного состояния в случае внутризеренного вязкого разрушения  [c.156]

Нам известно понятие числа и понятие вектора как величины, определяемой тремя числами. Напряженное состояние определяется уже не тремя, а шестью числами и представляет собой тензор. Тензору в отличие от вектора не может быть дано простого геометрического толкования, и тензор обычно задают матрицей (таблицей), иаписаипой, например, в виде  [c.234]

Совокупность векторов напряжений для всевозможных площадок, проходящих через данную точку, образует напряженное состояние в точке. Количественно оно оценивается сложной физической величиной, называемой тензором напряжений, компонентами которого являются нормалыше и касательные напряжения, действующие на трех взаимно перпендикулярных площадках, проходящих через данную точку.  [c.46]


Таким образом, напряженног состояние (тензор напряжений) в точке тела вполне определяется заданием трех главных напряжений 01 02 03 и ориентацией трех главных направлений (трех главных площадок), т. е. шестью величинами. Тензор напряжений является физически естествеиной и важной характеристикой напряженного состояния в точке тела.  [c.47]

XiM являются проекциями вектора напряжения Sv, то конец этого вектора всегда находится на поверхности эллипсоида с полуосями ai 02 03. Полученный эллипсоид дает геометрический образ напряженного состояния (тензора напряжений) в точке тела и носит название эллипсоида напряжений Ламе (рис. 2.7). Он показывает, что главное напряжение Oi есть одновременно наибольшее значение полного напряжения l v ma) = amax. Ес-ли а = (Т2=(Гз = ао, то эллипсоид превращается в шар. Тензор напряжений в этом частном случае называют шаровым, а среднее напряжение ао — его модулем.  [c.50]

В частице тела задан тензор напряжений с компонентами 0и = = 60 МПа, 022 =—10 МПа, 033=—20 МПа, 012 = 50 МПа, 013 = 80 МПа. 023=—60 МПа. Требуется определить напряжения 0окт, Токт, о,- и установить, в каком состоянии находится частица тела, если 0т = 190 МПа.  [c.62]

Предположим, что процесс деформирования в теле начинается в момент времени / = 0, и разобьем весь интервал [О, t] на некоторые подынтервалы точками 0 = То, Ть. .., — Будем считать, что на каждом из подынтервалов (т , 1, т/,) деформация постоянна и равна е (т/,) (в декартовой системе Е у (т ) = onst). Каждая такая деформация влияет на напряженное состояние в данной частице в момент времени x/v = и это влияние, по предположению, линейно, следовательно, связь между тензором Абу, (О вклада деформации е (т ) с этой деформацией осуществляется с помощью тензора четвертого ранга Г = Т( , Т ,). Полное напряжение представляет собой сумму вкладов от отдельных деформаций е(Т/,)  [c.45]


Смотреть страницы где упоминается термин Тензор напряженного состояни : [c.160]    [c.56]    [c.247]    [c.162]    [c.57]    [c.62]    [c.82]    [c.39]   
Сопротивление материалов (1999) -- [ c.306 ]



ПОИСК



Интенсивность деформаций. Направляющий тензор деформаГеометрическая интерпретация напряженного и деформированного состояний в точке нагруженного тела

Исследование напряженного состояния в точке при заданном тензоре напряжений

Напряжения в точке. Тензор напряжений. Круги Мора Специальные случаи напряженного состояния

Напряженное состояние в точке, Тензор напряжении

Напряженное состояние — Геометрический образ напряжения 10 — Модель 11 Разложение 13 — Тензор напряжения 10 — Тензорное обозначение

Тензор деформации для плоского напряженного состояния

Тензор напряженного состояния

Тензор напряженного состояния

Теория трансверсально-изотропных оболочек, напряженное состояние которых обусловлено заданным тензором несовместных деформаций (тензором дисторсии)



© 2025 Mash-xxl.info Реклама на сайте