Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия межкристаллитная — Контрол

Проверка хромоникелевой стали на склонность к межкристаллитной коррозии необходима для контроля качества металла.  [c.118]

Отливки всех групп подвергаются обязательному контролю по внешнему виду, размерам и химическому составу. Контроль отливок по специальным видам испытаний (гидравлические испытания, испытания на окалиностойкость, на стойкость против коррозии, межкристаллитную коррозию, длительную прочность, ползучесть и др.) должен производиться в соответствии с требованиями чертежа или технических условий заказа.  [c.275]


Акустико-эмиссионные исследования коррозии. Применение акустической эмиссии наиболее перспективно для исследования и контроля наиболее опасных видов локальной коррозии - межкристаллитной коррозии и коррозионного растрескивания.  [c.250]

В качестве дополнительных методов контроля, а также в исследованиях применяют различные физические методы определения межкристаллитной коррозии токовихревой, ультразвуковой, цветной, внутреннего трения и др.  [c.454]

Сг и 9 % Ni, быстрее всего происходит при закалке с температур от 1100 до 1200 °С и менее всего выражено при закалке с 900 или 1400 °С [22]. Сплавы высокой чистоты по углероду совершенно устойчивы. Присутствие небольших количеств углерода, азота, кислорода или марганца не оказывает существенного влияния, однако наличие кремния и фосфора (>100 мг/кг) приводит к разрушениям. Кремний вызывает межкристаллитную коррозию нержавеющей стали с 14 % Сг и 14 % N1, если его содержание находится в интервале 0,1—2 % если оно больше или меньше, сплав не склонен к межкристаллитной коррозии [23, 24]. Необходимость строгого контроля окислительных свойств среды и концентрации фосфора в сплаве для предотвращения межкристаллитной коррозии подтверждена также для закаленной. малоуглеродистой нержавеющей стали, содержащей  [c.308]

Рис 3.13. Ультразвуковой контроль межкристаллитной коррозии  [c.74]

Приходько В. И. Неразрушающий контроль межкристаллитной коррозии. - М. Машиностроение. 1982. - 101 с.  [c.95]

Контроль межкристаллитной коррозии. Степень поражения металла межкристаллитной коррозией можно контролировать, сравнивая амплитуды сигналов, прошедших один и тот же путь через образец до и после поражения коррозией. Коэффициент коррозии принимают равным отношению амплитуд этих сигналов и определяют на частоте, для которой в данном материале он в большой степени зависит от степени поражения. В зависимости от конкретных условий кроме продольных волн можно использовать сдвиговые или поверхностные волны.  [c.283]

Относительный метод с использованием двух различных частот также применяют для контроля межкристаллитной коррозии согласно ГОСТ 6032—75 при испытании сталей на склонность к межкристаллитной коррозии. В этом случае коэффициенты коррозии аналогичны соответствующим структурным коэффициентам.  [c.283]

В данной монографии автор стремился сосредоточить основное внимание на методах и средствах контроля за наиболее распространенными и опасными видами разрушений металла котлов, к числу которых необходимо отнести кислородную, кислотную, пароводяную, межкристаллитную коррозию, а также коррозионное растрескивание металла. Исходя из современных достижений электрохимии, в монографии существенное внимание уделено электрохимическим методам контроля за протеканием коррозии [1]. Некоторые методы, например гравиметрический, метод поляризационного сопротивления могут быть использованы для коррозионного контроля не одного, а нескольких видов теплоэнергетического оборудования.  [c.3]

Если язвенный и эрозионный износ зависят в основном от состава и скорости протекания охлаждающей воды, то коррозионное растрескивание связано главным образом с химическим составом и свойствами самого металла. Основные технологические причины низкого качества труб из латуней повышенное содержание мышьяка, вызывающее усиление межкристаллитной коррозии несовершенство литья, приводящее к неоднородности структуры отсутствие операций, облагораживающих поверхность труб (скальпирование слитков или прессование с рубашкой , окончательная отделка труб) применение отжига электро-контактного и на устаревших электропечах, приводящее к большому разбросу свойств и не гарантирующее получение регламентированного зерна применение правки без последующего низкотемпературного отжига, существенно повышающее склонность к коррозионному растрескиванию отсутствие дефектоскопического контроля.  [c.201]


При испытании на КР гладких образцов на растяжение существует хорошая практика параллельно с нагруженными образцами для контроля использовать образцы без нагрузки, так как образцы в напряженном состоянии могут разрушиться в результате значительного уменьшения поперечного сечения образца из-за межкристаллитной, питтинговой или общей коррозии. Такое дублирование не является необходимой операцией для образцов ДКБ поскольку все возможные коррозионные эф фекты могут быть изучены на ненапряженных частях тех же самых образцов после испытания. Например, когда образец ДКБ механически разорван после испытаний, на поверхности разрушения можно видеть глубину распространения не только коррозионной трещины, но и питтингов и межкристаллитной коррозии на ненапряженных частях образца.  [c.186]

Контроль на отсутствие склонности к межкристаллитной коррозии + + + + + +  [c.23]

Повышенная стоимость теплообменных аппаратов ядерных установок объясняется сложностью конструкции, обусловленной специфическими свойствами теплоносителей, необходимостью пооперационного технологического контроля, условиями эксплуатации, применением дорогих и сложных в обработке материалов, усложнением производства и трудностью технологического контроля аппарата (приварка или высокотемпературная пайка труб к трубным доскам, радиометрический контроль сварных швов, проба материала сварных швов на межкристаллитную коррозию и т. д.).  [c.43]

Кроме контроля швов на самих изделиях предусматривается комплекс лабораторных испытаний на образцах-свидетелях, выполненных в условиях, тождественных условиям сварки конструкции (механические испытания на межкристаллитную коррозию, металлографические исследования).  [c.110]

При сварке сосудов и их элементов из легированных сталей аустенитного класса, например хромоникелевых типа 18-8, контроль сварных соединений на межкристаллитную коррозию должен производиться в соответствии с ГОСТ 6032—58 в зависимости от свойств применяемой стали и условий работы сосуда.  [c.219]

Метод красок широко применяется для контроля деталей авиационной техники, изготовленных из магнитных и немагнитных материалов (черных и цветных сплавов и всевозможных пластмасс). Он позволяет обнаружить усталостные, шлифовочные и закалочные трещины, открытые волосовины, растрескивание поверхности деталей, изготовленных из жаропрочных сплавов, растрескивание хромового покрытия, поры, межкристаллитную и язвенную коррозию.  [c.372]

Из имеющихся в настоящее время примеров применения локальных методов исследования поверхностей к решению прикладных задач рассмотрим касающиеся только следующих областей сегрегации примесей на поверхности, границах зерен, межфазных границах коррозии (включая межкристаллитную) и окисления. Имеются работы по контролю поверхностей раздела в композиционных материалах [7], идентификации атомных структур и выделяющихся на поверхности фаз [5], поверхностной диффузии и поверхностных реакций, адгезии и износа. Много работ посвящено исследованию поверхности катализаторов в связи с Их активностью [6] и материалам полупроводниковой техники [8]. Все результаты, приведенные ниже, получены методом ОЭС, иногда в сочетании с другими методами.  [c.158]

Возможность применения мартенситностареющих и аустенито-мартенситных сталей определяется стойкостью против общей и межкристаллитной коррозии сварных соединений. При сварке сталей с повышенным содержанием углерода в зоне термического влияния наблюдается образование карбидной сетки, приводящей к межкристаллитной коррозии. Восстановление коррозионной стойкости достигается только после полного цикла термической обработки изделия после сварки. Стали аустенитно-мартенситного класса подвергаются контролю на склонность к межкристаллитной коррозии в соответствии с ГОСТ 6032—84.  [c.46]

Контроль методом красок производится с помощью индикаторных жидкостей, в которые вводят специальные красители. Технология контроля этим методом не имеет существенного отличия от люминесцентного метода. Контролируемые поверхности также очищают от различных загрязнений, наносят слой жидкого индикаторного состава, затем после выдержки, необходимой для заполнения поверхностных дефектов, избыток состава удаляют и производят проявление. При контроле сварных соединений для заполнения дефектов типа трещин требуется выдержка 3...5 мин, пор и межкристаллитной коррозии — 8... 15 мин.  [c.46]

Контроль качества сварных соединений сосудов, работающих под давлением, производит организация, выполняющая их сварку. Для этого используют большинство из известных методов контроля внешним осмотром и измерением, ультразвуковой дефектоскопией и просвечиванием рентгеновскими и гамма-лучами, выполняют механические испытания и металлографические исследования, проводят гидравлические испытания и другие виды контроля, предусмотренные технической документацией на данное изделие. Например, в случае сварки сосудов из аустенитных сталей проверяют коррозионную устойчивость и сопротивляемость межкристаллитной коррозии при сварке сосудов из низколегированных закаливающихся хромомолибденовых сталей производят контроль стилоскопированием, проверяют твердость, выполняют цветную дефектоскопию и др. Если предусмотрена термообработка, то контрольные операции должны выполняться после ее завершения.  [c.202]


Практика показала, что чувствительность капиллярной дефектоскопии повышается, если перед операцией Л Ь 4 контролируемые детали подвергнуть воздействию ультразвука. Например, после озвучивания витых пружин из проволоки в течение 20—30 с с помощью ультразвукового генератора УЗГ-10-22 на пружинах, обработанных в составах ЛЖ-6А, ЛЖ-4, открылось большое число дефектов, в том числе трещин, образовавшихся вследствие межкристаллитной коррозии. Ранее при этой же методике контроля, но без использования ультразвука эти трещины на этих же пружинах не были обнаружены.  [c.547]

В технике используются механические колебания в очень широком интервале частот — от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных волн. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождении через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность — возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т. е. таких синтетических материалов, которые находят все большее применение в технике.  [c.548]

Цветная дефектоскопия (метод красок). Сущность метода цветной дефектоскопии заключается в следующем, Для выявления дефектов на предварительно очищенную и обезжиренную поверхность сварного шва и околошовной зоны наносят окрашенную анилиновым красителем в ярко-красный цвет смачивающую жидкость специального состава с большой капиллярной активностью. Под воздействием капиллярных сил жидкость (красная краска) проникает в мелкие зазоры и отверстия—поверхностные дефекты. При контроле сварных соединений, пораженных межкристаллитной коррозией, красная краска проникает и в пространства между зернами.  [c.260]

Контроль межкристаллитной коррозии. Межкристаллитную коррозию, поражающую изнутри стенки сосудов и трубопроводов, наиболее эффективно обнаруживать акустическим неразрушающим методом. При язвенной и питтинговой коррозии наблюдается локальное утонение стенок, которое фиксируется УЗ-тол-щиномерами группы Б. Межкристаллитная коррозия характеризуется очень тонкими промежутками между зернами металла, заполненными продуктами коррозии. При этом связь между кристаллитами нарушается и снижается прочность металла. Такие промежутки не дают четкого отражения УЗ-волн, поэтому межкристаллитную коррозию контролируют по затуханию ультразвука.  [c.420]

Примечание. УЗК — результаты ультразвукового контроля РГК — результат контроля рентгенопросвечивания МКК — результат конт-роля на межкристаллитную коррозию МПД — результат контроля магнитно-порошковой дефектоског/иеГг.  [c.254]

Ультразвуковой контроль межкристаллитной коррозии хржникелевых сталей  [c.71]

Контроль межкристаллитной коррозии прсводится наклонными призматическими щупами, посылающими в иссле уемую сталь поверхностные или сдвиговые ультразвуковые колебания по двущуповой схеме (рис. 3.13).  [c.74]

Показателями степени рассеивания ультразвуковых колебаний, по которым определяется глубина прокорродироианного слоя, принимаются отношения амплитуд эхо-сигналов при ультразвуковом контроле образцов с различной глубиной коррозии и без коррозии при фиксированной частоте ультразвука и пр пос оянном коэффициенте прибора, эти. отношения, называемые коэффициентами межкристаллитной коррозии, определяются следующими равенствами  [c.74]

Межкристаллитная коррозия (МКК) - oд и из наиболее часто наблюдаемых и опасных видов коррозионного разрушения аустенитных хромоникелевых, а также хромистых коррозионно-стойких сталей. Как видно из названия этого вида коррозии, разрушению подвергаются в основном границы зерен. металла, происходит избирательная коррозия.. Металл в течение короткого времени теряет прочность и пластичность. При этом отсутствуют внешние признаки разрушения, что затрудняет контроль и раннюю диагностику экснлуатарующихся деталей на МКК- К настояще.му вре.мени разработаны довольно эффективные способы повышения стойкости сталей к МКК., по несмотря на это необходимость в тщательном контроле возможности появления этого вида разрушения не отпадает. Тем более необходимо это при изменении конструкции. машины, условий ее эксплуатации. Практика показывает, что чаще всего и.менио в этих случаях происходят разрушения от МКК.  [c.46]

Коррозионная стойкость более легированных магнием сплавов АМг5, АМгб зависит от методов производства полуфабрикатов и условий эксплуатации. Длительные нагревы при температуре 60— 70 °С могут вызвать появление склонности к межкристаллитной коррозии и коррозионному растрескиванию. Коррозионная стойкость обеспечивается строгим контролем технологии производства полуфабрикатов. Сварные соединения этих сплавов равноценны по стойкости основному металлу. Однако нагрев материала выше 100°С после сварки делает сварные соединения склонными к межкристаллитной коррозии.  [c.74]

Метод цветной дефектоскопии применяют для выявления межкристаллитной коррозии как на образцах из коррозионно-стойких сталей, так и на деталях действующей аппаратуры химических производств. Технология контроля не отличается от обычной методики цветной дефектоскопии. Межкристаллитная коррозия выявляется в виде мелкой сетки на белом фоне покрытия или сплошного покмснения покрытия на прокорродировав-ших участках металла. При наличии эталонных образцов с различной глубиной коррозии по степени покраснения можно приблизительно определить глубину коррозии. При значительной глубине межкристаллитной коррозии покраснение белого покрытия происходит уже через 1—2 мин.  [c.115]

Контроль труб включает визуальный осмотр, проверку ультразвуком, контроль на межкристаллитную коррозию (МКК), технологические пробы и гидропробу. Сварные трубы подвергают гаммаграфированию на всю длину сварного шва.  [c.68]

Для оценки свойств биметаллов применяют комплекс испытаний, регламентированных ГОСТ 10885-85 и соответствующими техническими условиями так, свойства металла основы для горячекатаной коррозионно-стойкой двухслойной стали определяют испытаниями на растнжеине но ГОСТ 1497-84, ударную вязкость — по ГОСТ 9454-78 и др. Прочность соединения определяют при испытания.х на изгиб образцов с расположением плакирующего слоя внутрь и наружу, на срез — с определением сопротивления срезу по плоскости соприкосновения основного и плакирующего слоев (табл. 8.43). Плакирующий коррозионно-стойкий слон испытывают на межкристаллитную коррозию. Биметаллические листы подвергаются неразрушающим методам контроля.  [c.299]


Для входного контроля от каждой партии-плавки стали аустенитного класса отбирают 2 пробы (для сталей других классов — 4 пробы). Контрольные пробы (1 и 2 соответственно) изгибают на 90° и на коррозию не испытывают. Оставшиеся пробы испьггьшают в коррозионных средах, а затем подвергают изгибу на 90 (методы AM, АМУ, В, ВУ). Для обнаружения межкристаллитной коррозии место изгиба осматривают с помощью лупы с увеличением 8-12. Наличие трещин на изогнутой поверхности свидетельствует о склонности к межкристаллитной коррозии. В этом случае испытания повторяют на удвоенном количестве образцов. При повторном обнаружении трещин при изгибе даже на одном из них металл считается не выдержавшим испытания и бракуется.  [c.89]

Из имеющегося в настоящее время большого числа применений локальных методов исследования поверхностей к решению прикладных задач рассмотрим некоторые, касающиеся только двух областей сегрегации примесей на поверхности, границах зерен, межфазных границах, а также коррозии и окисления, включая межкристаллитную коррозию. Помимо этого, имеются работы по контролю поверхностей раздела в композиционных материалах [10.91, по идентификации атомных структур и выделяющихся фаз на поверхности [10.71, поверхностной диффузии и поверхностным реакциям, адгезии и износу. Большое число работ посвящено исследованию поверхности катализаторов в связи с их активностью [10.8] и материалам полупроводиковой техники [10.101. Все результаты, приведенные ниже, получены методом ОЭС, иногда в сочетании о другими методами.  [c.129]

При диагностировании технического состояния оборудования, эксплуатируемого в условиях возможного проявления водородной коррозии, следует учитывать тепловую хрупкость (см. п. 4.4.2). Ослабление когезивной прочности границ зерен, в результате проявления механизма теплового охрупчивания, возможно в большей степени ответственно за появление межкристаллитного растрескивания элементов конструкций. Для количественной оценки степени охрупчивания металла следует использовать фрактографический метод (п. 3.8 [2]), позволяющий количественно оценить степень охрупчивания стали при использовании регламента контроля оборудования установок гидроочистки, каталитического риформинга и других высокотемпературных блоков [124]. Формализованный расчет эквивалентного времени пребывания металла стенки аппаратов в диапазоне температур развития водородной коррозии не обеспечивает надежной оценки степени повреждения сталей. Это особенно справедливо, учитывая тот факт, что степень теплового охрупчивания существенно зависит от химического состава и структуры материала оборудования.  [c.187]

При использовании стандартного метода выявления склонности к межкристаллитной коррозии алюминиевых сплавов в реактиве, содержащем 3% Na l и 1% НС1 (метод Б), при наличии межкристаллитной коррозии поверхность сплава покрывается осадком меди, придающим ей красноватый оттенок. При слабой склонности к межкристаллитному разрушению осадок меди может быть плохо заметен, тогда необходим дополнительный металлографический контроль.  [c.265]

Дефектоскопом в общем случае называют прибор, предназначенный для обнаружения и измерения дефектов. В этом смысле прибор Комплекс 2.05 не является дефектоскопом по утверждению разработчиков, его следует отнести к новому классу средств технической диагностики. Не всякий дефект в виде разрыва сплошности или инородного включения создает местную КМН или высокий градиент РГМН. Если в зоне контроля этим прибором имеется дефект, не создающий возмущение поля напряжений и не являющийся концентратором напряжений, то данный дефект на картограммах РГМН и КМН не будет обозначен. Наличие таких дефектов не препятствует безопасной эксплуатации металлоконструкции. В то же время любой существенный концентратор напряжений в виде дефекта даже весьма малых размеров или дефекта, вообще не имеющего нарушения (разрыва) сплошности среды и не обнаруживаемого традиционными методами дефектоскопии, может быть выявлен на карте РГМН и КМН. К ним могут быть отнесены, например, такие опасные дефекты, как тонкие трещины, зарождающаяся межкристаллитная коррозия и др.  [c.128]


Смотреть страницы где упоминается термин Коррозия межкристаллитная — Контрол : [c.460]    [c.72]    [c.155]    [c.277]    [c.237]    [c.43]    [c.102]    [c.73]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.2 , c.248 ]



ПОИСК



Контроль за коррозией

Коррозия межкристаллитная

Межкристаллитная коррози

Ультразвуковой контроль межкристаллитной коррозии хромоникелевых сталей



© 2025 Mash-xxl.info Реклама на сайте