Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магний, коррозионная стойкост

Локальная коррозия 76 Ложный перлит 195 Магний, коррозионная стойкость 270  [c.356]

Магний. Коррозионная стойкость магниевых сплавов за последнее время повысилась добавки марганца противодействуют вредному влиянию железа и никеля. Так же как и в случае алюминия, коррозия сильнее на изделиях, защищенных от дождя.  [c.475]

В связи с непрерывно увеличивающимся металлическим фондом, находящимся в эксплуатации (рис. 1), внедрением в технику сплавов с пониженной коррозионной стойкостью (например, сплавов магния), а также усложнением условий эксплуатации металлических конструкций общие потери от коррозии металлов имеют тенденцию год от года возрастать.  [c.10]


Магний — щелочноземельный металл, II группы Периодической системы элементов, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерным свойством магния является малая плотность 1,74 г/см , температура плавления магния 650 °С. Кристаллическая решетка гексагональная (с/а = 1,62354). Теплопроводность магния значительно меньше, чем у алюминия 125 Вт/(м-К), а коэффициенты линейного расширения примерно одинаковы (26,1 10 при (20—100 С) I. Технический магний Мг1 содержит 99,92 % Mg. В качестве примесей присутствуют Ре, Si, Ni, Na, Al, Мп. Вредными примесями являются Ре, Ni, Си и S1, снижающие коррозионную стойкость магния. Механические свойства литого магния сГв = 115 МПа, о ,., = 25 МПа, б 8 %, Е = = 45 ГПа, НВ 300 МПа, а деформированного (прессованные прутки) Оц 200 МПа, ст ,., = 9 МПа, б =-- 11,5 %, НВ 400 Л Па. На воздухе м, 11 ит легко воспламеняется. Используется в пиротехнике и химической промышленности.  [c.337]

Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса.  [c.22]

Коррозионная стойкость магния зависит от чистоты металла даже в большей степени, чем в случае алюминия. Подвергнутый дистилляции магний корродирует, например, в морской воде со скоростью 0,25 мм/год, что приблизительно вдвое превышает скорость коррозии железа. Однако технический магний корродирует в 100—500 раз быстрее, и процесс сопровождается видимым вы-  [c.354]

В обычных атмосферных условиях магний обладает удовлетворительной коррозионной стойкостью, но в пресной и морской воде, а также в атмосфере водяных паров оказывается недостаточно стойким.  [c.122]

Магний обладает высокой коррозионной стойкостью в растворах фторидов, хроматов и бихроматов, устойчив во многих безводных органических жидкостях, в том числе в масле, нефти, бензине и керосине.  [c.122]

Титан и его сплавы относятся к числу химически активных материалов. В электрохимическом ряду напряжений титан находится между магнием, алюминием и бериллием, нормальный потенциал реакции Т -> - Тр +2е, отнесенный к нормальному водородному элементу, равен — 1,75 В, в то время как электродные потенциалы магния и алюминия равны соответственно —2,37 и —1,66 В. При этом высокая химическая активность титана сочетается с исключительно высокой коррозионной стойкостью. Последнее объясняется наличием на поверхности тонкой практически бездефектной пленки оксидов, мгновенно образующихся  [c.114]


Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Титан и его сплавы по своим механическим и физическим свойствам занимают промежуточное место между легкими металлами и их сплавами (на основе алюминия и магния) и сталями. Такая высокая склонность к пассивации титана и его сплавов обеспечивает им высокую коррозионную стойкость как в приморской атмосфере, так и в морской воде.  [c.75]

Большинство технических конструкционных сплавов (на основе железа, меди, алюминия, магния), которые широко применяют в строительстве наземных сооружений, в авто- и авиастроении, на железнодорожном транспорте и в судостроении, характеризуются умеренной коррозионной стойкостью в атмосферных условиях и нередко нуждаются в дополнительной защите.  [c.90]

Помимо природы компонентов, коррозионная стойкость материала определяется коррозионной активностью среды по отношению к этим компонентам. Так, например, никелевая матрица, армированная вольфрамом, корродирует в азотнокислых растворах, а избирательное растворение вольфрама происходит в растворах щелочей, содержащих окислитель. Магний, армированный коррозионно-стойкой сталью, быстро растворяется в разбавленной щавелевой кислоте, при этом разрушение происходит особенно интенсивно на границе матрицы с волокном.  [c.226]

Коррозионная стойкость на воздухе и в электролитах большинства материалов с матрицами из алюминия и магния в общем ниже, чем у гомогенных сплавов. Особенно она понижается, когда воздействию коррозионной среды подвергаются торцы материала. При этом происходит усиленное растворение матрицы вследствие ускоряющего воздействия волокон и других упрочняющих фаз, являющихся катодами. Для защиты от коррозии следует применять те же методы которые используются для обычных алюминиевых и магниевых сплавов с исключением контакта с коррозионной средой торцов материала. Коррозионностойкими материалами могут считаться композиционные материалы с матрицами на основе титана, свинца, меди. Особые преимущества могут быть достигнуты по характеристикам усталости п по торможению развития коррозионных трещин.  [c.79]

Сравнительно низкой коррозионной стойкостью в морских средах обладают сплавы серий 7000 (основные добавки цинк и магний), 2000 (медь) и 4000 (кремний).  [c.130]

Пассивное состояние металлов имеет большое практическое значение. Коррозионная стойкость ряда металлов, например алюминия и магния в воздухе и воде, титана во многих коррозионных средах, асто бывает обусловлена их пассивностью.  [c.322]

Добавление марганца или магния в алюминиевомедиый сплав улучшает его механическую прочность, а также коррозионную устойчивость. Сплавы типа магналий, содержащие от 4 до 2% Mg и до 17о Мп и иногда 0,1% Т1, обладают хорошей коррозионной стойкостью и механическими свойствами, близкими к дюралюминию. Сплавы, содержащие более 5% Mg, склонны к межкристаллитной коррозии под напряжением.  [c.272]


При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода на этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, НИНК, кадмий).  [c.274]

Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]

Фосфатирование. Этот способ применяется чаще всего для защиты стали, но фосфатиругот и некоторые цветные металлы (цпик, магний и др.)- Фосфатирование — процесс получения на поверхности стали пленки фосфорнокислой соли железа и марганца. Так как фосфатные пленки вследствие пористости обла-да(от недостаточной коррозионной стойкостью, применение фос-фатироваииых изделий допустимо только в атмосферных условиях.  [c.331]

Сплавы А1—Mg. Сплавы алюминия с магнием (табл. 23) имеют низкие литейные свойства, так как они содержат мало эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Добавление к сплаву (9,5—11,5 % Mg) модифицирующих присадок (Ti, Zr) улучшает механические свойства, а бериллия уменьишет окисляемость расплава, что позволяет вести плавку без защитных флюсов,  [c.336]

Алюминий — легкий металл (плотность 2,71-10 кг/м ), обладающий высокой коррозионной стойкостью в атмосфере и многих водных средах. Это сочетается в нем с хорошей электро- и теплопроводностью. Он очень электроотрицателен в ряду напряжений, но пассивируется при контакте о водой. Хотя растворенный в воде кислород повышает коррозионную стойкость алюминия, его присутствие не является обязательным для наступления пассивности. Следовательно, Фладе-потенциал алюминия отрицательнее потенциала водородного электрода. Считается, что пассивирующая пленка на алюминии состоит из оксида алюминия, толщину ее, если окисление происходило на воздухе, оценивают в 2— 10 нм (20—100 А). Коррозионное поведение алюминия зависит даже от малых количеств - примесей в металле, причем все эти примеси, за исключением магния, являются по отношению к алю-  [c.340]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Алюминий и его ставы обладают хорошей коррозионной стойкостью в атмосфере, нейтральных средах за счет амфотерных свойств образующейся пленки гидроксида алюминия. В растворах азотной, фосфорной и серной кислот он имеет достаточно высокую коррозионную стойкость, а в соляной, фтористоводородной, концентрированной серной, муравьиной, щавелевой кислотах растворяется. При закалке алюминия примеси меди и кремния переходят в твердый раствор, что повышает его коррозионную стойкость. Л.тюминий легируют медью (дуралюмин), магнием (магналии), цинком, кремнием и марганцем, главным образом для улучшения механических свойств.  [c.18]

Сплавы на основе алюминия. Сплав А1—Mg марки АМгб (магналий) является деформируемым и термически неупрочняемым, состав сплава 6,3% Mg 0,6% Мп 0,06% Ti. Магний уменьшает плотность алюминиевого сплава (рмй= 1,74 г/см ), повышает прочность без снижения пластичности и коррозионную стойкость. При 20° С сплав имеет следующие свойства = 330 Мн/м (33 кгс/мм ) б = 24%. Сплав АМгб теплостоек до 250° С, при этой температуре его свойства следулощие = = 160 Мн/м (16 кгс/мм ) б = 45%. Этот сплав применяют при изготовлении труб, крышек и корпусов приборов, кронштейнов, экранов, стрелок и т. д.  [c.270]

Коррозионная стойкость алюминневомагниевых сплавов удовлетворительна И не уступает коррозионной стойкости промышленного алюминия в средах растворов (20° С) азотнокислого аммония, аммиака, гидрата окиси кальция, квасцов, перекиси водорода, сероводорода (также в среде сухого газа), сернистого аммония, сернокислого калия, сернокислого кальция, углекислого аммония, углекислого калия, углекислого магния, в среде влажной атмосферы.  [c.87]

Микроструктура сплава A M. Сплав A M состоит из кристаллов химического соединения AlSb и двойной эвтектики а-твердый раствор магния и сурьмы в алюминии-Ь химическое соединение AlSb. По коррозионной стойкости равноценен сплаву АСС-6-5.  [c.113]

Коррозионная стойкость. Магний относится к 1 аиболее электроотрицательным металлам. Его электродный потенциал в 3% растворе Na I равен 1,45 в. Коррозионная стойкость магння зависит от ряда факторов — окружающей среды, методов защиты, наличия примесей и т. д.  [c.122]

Кальций, магний и натрий повышают прочность и твердость свинца и снижают его коррозионную стойкость. Кроме того, малые добавки кальция (более 0,03%) сильно затормаживают рост зерна в свинце и заметиО повышают сопротивление усталости и ползучести свинца.  [c.303]

Большое распространение имеют плакированные легкие металлы на основе дуралюмина и других прочных сплавов с плакирующим слоем из чистого алюминия или коррозионностойких сплавов алюминия с марганцем, магнием или кремнием. В силу своей высокой коррозионной стойкости и способиости легко выдерживать разнообразные технологические операции (гибку, вытяжку, выдавливание) плакированный дуралюмин широко применяют везде, где наряду с хорошими механическими свойствами требуется высокая химическая устойчивость самолето-, судо-, автостроение, химическое аппаратостроение, пищевая промышленность, горное дело.  [c.628]

Высокопрочные алюминиевые сплавы В93, В95 наряду с медью и магнием содержат цинк. Прочность этих сплавов достигает 50—52 ксг1мм , а электрическая проводимость образцов в термообработанном состоянии 22,5 и 19,0 mI oj4-mm ) соответственно. Прочность повышается с увеличением содержания цинка и магния (но пластичность и коррозионная стойкость снижаются).  [c.61]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]


Хроматирова[Ние применяют на цинке, алюминии, магнии и латуни. Обработку проводят, используя водный раствор хромовой кислоты или хромата, часто содержащий другие добавки, например фосфорную и соляную кислоты. На поверхности образуется тонкое (0,1-2,0 г/м ) хроматное покрытие зеленого, желтого, черного или бледно-голубого цвета, которое заметно улучшает ее коррозионную стойкость. Хроматирование широко применяют для оцинкованной стали с целью защитить ее от образования белой ржавчины во время транспортировки и хранения. Его значительное неудобство состоит, однако, в том, что у работающих с некоторыми типами хроматированных материалов, может возникнуть аллергическая экзема в результате контакта с шестивалентным хромом. Другое неудобство состоит в том, что такие средства защиты от белой ржавчины труднее удаляются и могут впоследствии затруднить окрашивание. В настоящее время предпринимают значительные усилия чтобы разработать эффективную защиту против белой ржавчины, не имеющую недостатков свойственных хроматированию.  [c.84]

Сплавы на основе магния [67]. Сплавы магния характеризуются пониженной коррозионной стойкостью в атмосферных условиях. Так, скорость коррозии сплава МА2-1 равна в сельской атмосфере от 1 до 15 мкм/год в промышленной — от 4 до 75 мкм/год в приморской от 1,2 до 23 мкм/год. Все сплавы магния при эксплуатации в атмосферны1Х условиях требуют специальной защиты от коррозии.  [c.92]

Сплавы алюминия и магния в значительной степени способствовали успеху битвы 1за килограммы. Ведь маг,ний легче алюминия, его удельный вес всего 1,74 г/см . Самому магнию было трудно состязаться с алюминием из-за невысокой коррозионной стойкости, возможного брака при литье и относительно небольшого температурного потолка эксплуатации. Однако сплавы магния, легированные торием, иттрием, неодимом и другими присадками, из-за высокой теплоемкости оказались прекрасными конструкционными материалами, особенно для кратковременной эксплуатации в температурном интервале 350— 450°. Они нашли применение в ракетостроении. Их использовали для обшивки корпуса, топливных и кислородных баков, баллонов пневмосистем, стабилизаторов и других частей американских ракет Юпитер , Атлас , Титан , Поларвс и спутников Авангард и Дискаверер .  [c.113]

Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу.  [c.74]

Коррозионная стойкость более легированных магнием сплавов АМг5, АМгб зависит от методов производства полуфабрикатов и условий эксплуатации. Длительные нагревы при температуре 60— 70 °С могут вызвать появление склонности к межкристаллитной коррозии и коррозионному растрескиванию. Коррозионная стойкость обеспечивается строгим контролем технологии производства полуфабрикатов. Сварные соединения этих сплавов равноценны по стойкости основному металлу. Однако нагрев материала выше 100°С после сварки делает сварные соединения склонными к межкристаллитной коррозии.  [c.74]

Сплавы системы А1—Mg—Си—Si при малом содержании легирующих АД31, АДЗЗ, АД35, АВ обладают удовлетворительной коррозионной стойкостью (меньшей у сплава АВ из-за большего содержания меди). Они нечувствительны к технологическим и эксплуатационным нагревам. Основной металл и сварные соединения не склонны к коррозионно.му растрескиванию. Сплавы повышенной прочности типа 892, содержащие большое количество меди, магния, цинка, обладают более низкой стойкостью. Они чувствительны к термической обработке, нагартовке и технологическим нагревам.  [c.74]

Цирконий и его сплавы. Основное применение как конструкционный материал цирконий находит в ядерной технике — в атомных реакторах — вследствие особого свойства — слабо поглощать тепловые нейтроны. О материале, обладающем таким свойством, говорят, что он имеет малое поперечное сечение поглощения тепловых нейтронов. У циркония сечение поглощения тепловых нейтронов равно 0,18-10" см , у алюминия 0,2Ы0 см , однако он уступает цирконию в коррозионной стойкости, чем и объясняется ислользование циркония. Меньшее сечение поглощения тепловых нейтронов, чем у циркония, имеют магний (0.059-10-2 сл ) и бериллий (0,009-lO см ).  [c.326]

Алюминий легируется магнием для образования важного класса термически необрабатываемых сплавов (серии 5000). Полезность н важное значение этих сплавов обусловлены их коррозионной стойкостью, высокой прочностью без термической обработки и хорошей свариваемостью. Алюминиевые сплавы серии 5000 корродировали главным образом по щелевому и ппттинговому типам локальной коррозии. Другими обнаруженными типами коррозии были вспучивание, образование язв, кромочная, межкристаллитная, линейная коррозия и расслаивание.  [c.368]


Смотреть страницы где упоминается термин Магний, коррозионная стойкост : [c.273]    [c.330]    [c.349]    [c.388]    [c.101]    [c.74]    [c.75]    [c.160]    [c.203]    [c.80]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.270 ]



ПОИСК



Коррозионная стойкость алюминия магния

Коррозионная стойкость магния металлов — Шкала

Коррозионная стойкость магния пассивных пленок

Коррозионная стойкость магния покрытий на сплавах

Коррозионная стойкость магния сплавов

Коррозионная стойкость магния сплавов — Шкала

Коррозионная стойкость магния фосфатированной стали

Коррозионная стойкость магния хроматно-фосфатных пленок

Магний

Магний Коррозионная стойкость

Магний Коррозионная стойкость — Влияние сред

Сплавы повышенной пластичности коррозионной стойкости системы алюминий—магний—кремний

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте