Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы алюминий — углеродное волокн

Большое внимание в настоящее время уделяется исследованию композиционных материалов алюминий — углеродное волокно, обладающих высокой прочностью и малой плотностью. Свойства этих материалов зависят от свойств упрочняющих волокон, а также в значительной степени от метода изготовления и технологических параметров. Так, например, композиционный материал, содержащий 30—40 об. % волокон, при плотности 2 г/см в зависимости от вида упрочнителя и технологии может иметь предел прочности от 50 до 120 кгс/мм [156, 170, 178]. Модуль упругости материала зависит только от величины модуля упругости применяемого волокна и может изменяться в пределах от 9000 до 20 000 кгс/мм [170]. На рис. 83 показано изменение предела прочности композиционного материала на основе алюминиевого сплава А-13 (алюминий + 13% кремния), упрочненного —30 об. % углеродного волокна. Видно, что вплоть до температуры плавления матрицы прочность заметно не меняется. Длительная (100-часовая) прочность подобного материала при 400° С составляет 15—20 кгс/мм [1]. Характеристики усталости материала алюминий — 33—38 об. % углеродного волокна приведены в табл. 47.  [c.210]


Среди различных композиционных материалов с арматурой особое место занимает алюминий, армированный стальной проволокой, кремнеземными волокнами, волокнами бора, усами окиси алюминия (сапфира), углеродными волокнами и бериллиевой проволокой.  [c.124]

Волокнистые композиционные материалы. В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбида кремния, оксида алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются  [c.263]

В дальнейшем были разработаны новые перспективные волокна для композиционных материалов. К ним относятся углеродные волокна с различным сочетанием жесткости и прочности, борные волокна большого диаметра, органические волокна РНВ-49, волокна карбида кремния, непрерывные волокна окиси алюминия. Некоторые из этих волокон более пригодны для применения в сочетании с металлическими, а не полимерными матрицами.  [c.131]

В настоящее время все большее внимание уделяется композиционным материалам на металлической основе, армированной высокомодульными углеродными волокнами. Совместимость армирующего компонента и матрицы в некоторых случаях достигается введением связующего, функцию которого выполняет покрытие. Металлические покрытия необходимы в тех случаях, когда матрица не смачивает поверхность углеродных волокон при температурах получения композиции (алюминий, магний [21), Кроме того, покрытие углеродных волокон такими металлами, как цинк и медь, может впоследствии служить основой или компонентом основы композиционного материала [3].  [c.129]

Возможны случаи, когда композиция содержит два или три армирующих компонента различной геометрии например, пластик на основе эпоксидной или полиимидной смолы, армированный углеродными волокнами (одномерный компонент) и короткими нитевидными кристаллами карбида кремния (нуль-мерный компонент), или композиция на основе алюминия, армированного борными волокнами (одномерный компонент) и слоями титановой фольги (двухмерный компонент). Такие композиционные материалы следует называть комбинированными.  [c.51]

Если краевой угол на поверхности раздела волокно—матрица 0 < 90°, то расплавленная матрица смачивает волокно. При этом, как правило, происходит незначительное растворение волокна без образования каких-либо соединений. В таких композиционных материалах возникает связь путем растворения и смачивания. Предполагается, что такая связь образуется в композициях на алюминиевой и никелевой основах, армированных углеродными волокнами. Расплавленный алюминий не смачивает углеродные волокна до тех пор, пока поверхность их не будет обработана специальным составом.  [c.59]


В табл. 7.1 сопоставляются характеристики при растяжении металлов, армированных углеродными волокнами. Как видно из значений, приведенных в таблице, прочность армированного углеродными волокнами алюминия в поперечном направлении ниже, чем у других материалов. В США армированный углеродными волокнами алюминий производится из полуфабрикатов в виде проволоки, полученных методом пропитки в расплаве. Прочность вдоль армирующих волокон у композиционного материала алюминий-углеродные волокна марки Т 300 (на основе полиакрилонитрила) высокая, причем на промежуточное покрытие  [c.248]

Прочностные характеристики при растяжении армированного углеродными волокнами алюминия, полученного методом жидкофазного горячего прессования с использованием охлаждаемых плит, приведены в табл. 7.4. В композиционных материалах на основе высокомодульных графитовых волокон марок НМ/718 и М 40/718 степень реализации прочности волокон составляет приблизительно 80%, а в композиционном материале на основе высокопрочных углеродных волокон марки НТ/718 — 25%. Прочность при растяжении поперек волокон во всех слу-  [c.251]

Среди полимерных материалов, армированных непрерывными волокнами, углепластики - одни из наиболее перспективных. В настоящее время для получения армированных пластиков используются, как известно, не только углеродные волокна. Уже продолжительное время применяются борные волокна, которые по сравнению с углеродными волокнами обладают большей жесткостью. Арамидные волокна, с появлением которых изменились наши представления о свойствах органических волокон, имеют значительно меньшую плотность, чем углеродные волокна. Волокна из карбида кремния и оксида алюминия весьма стойки к воздействию высоких температур. Поэтому углеродные волокна используют тогда, когда они могут успешно конкурировать по свойствам с другими волокнами. Недостатки материалов на основе углеродных волокон можно компенсировать, используя гибридные армированные пластики, которые получают путем сочетания в одном материале углеродных и других типов волокон. Таким образом, при создании современных композиционных материалов применяют дифференцированный подход к выбору волокон или их комбинаций.  [c.263]

К числу наиболее известных способов изготовления композиционных материалов системы алюминий — борное волокно, алюминий — углеродное волокно, а также магний — борное волокно относятся диффузионное соединение пакетов горячим прессованием и пропитка армирующих материалов жидкометаллической матрицей.  [c.596]

Прочность композиционных материалов на основе алюминия и магния с углеродными волокнами при содержании последних 30—40% (объемных) составляет при комнатной температуре 70—80 кгс/мм , а при 400° С 60—70 кгс/мм . Их модуль упругости 13 000—15 ООО кгс/мм при плотности 2,3 г/см для алюминиевой композиции и 1,8 г/см для магниевого композиционного материала.  [c.598]

Развитие процессов разрушения в композиционных материалах при активном растяжении. Композиты с высокомодульными и высокопрочными волокнами, например борными и углеродными, и с металлическими матрицами, например из сплавов алюминия, являются в настоящее время весьма перспективными и уже находят применение в изделиях, в которых  [c.19]

Перспективными являются волокнистые (композиционные) материалы. Высокая прочность и пластичность в этом случае достигается путем армирования мягкой металлической матрицы (медь, алюминий, серебро, нихром, полимеры и т. д.) бездефектными, нитевидными кристаллами (усами) неметаллов (а—АЬОз, углеродные волокна, карбиды В4С, 51С и др.) .  [c.67]

Алюминий — углеродное волокно. Основным технологическим приемом получения композиционных материалов алюминий — углеродное волокно, наиболее часто применяемым в настоящее время, следует считать пропитку каркаса из углеродных волокон расплавом алюминиевой матрицы. Однако наряду с этим методом некоторые исследователи применяли для изготовления композиций методом диффузионной сварки под давлением [1, 156, 176, 184]. Так, в работах [23, 156] описан технологический процесс получения композиционного материала методом горячего прессования в вакууме углеродных волокон различных марок, на которые методом разложения триизобутила было нанесено покрытие из алюминия.  [c.137]

Углеродные волокна. В композиционных материалах используются различные виды углеродных волокон. В первом приближении они могут быть разделены на высокомодульные, высокопрочные и среднего качества дешевые волокна. Высокомодульные волокна имеют модуль упругости от 35 000 до 52 000 кгс/мм . Эти волокна обладают самым высоким удельным модулем упругости и в 7—11 раз жестче алюминия, титана и стали. Таким образом, теоретически они могут быть исключительно эффективны для высокожестких конструкций.  [c.84]

Исследование влияния никелевых покрытий на волокне на структуру и свойства композиционного материала алюминий—углеродное волокноУС. Е. Салибеков, А. А. Заболоцкий, В. А. Турченков и др. — В кн. Волокнистые и дисперсноупрочненные композиционные материалы. М., Наука, 1976, с. 33—37.3  [c.244]

Факторы, влияющие на формирование структуры и свойства композиционных материалов системы алюминий — углеродное волокно/С. Е. Салибеков, А. А. Заболоцкий, В. А. Турченков и др. — Порошковая металлургия, 1977, № 2, с. 58—64.  [c.247]


Другим путем совершенствования перспективных двигателей является применение в конструкции силовой установки новых материалов, и в том числе композиционных. Первоначально такие композиционные материалы, как борные и углеродные волокна в полимерной или дуралюминовой матрице, будут, вероятно, применяться в относительно холодных узлах и элементах двигателя (например, лопатки вентилятора и компрессора низкого давления, панели мотогондолы и т. д.). Затем композиционные материалы с более высокими характеристиками (волокна бора и окиси алюминия в матрицах из титана, никеля и ниобия, а также эвтектические сверхсплавы с направленной кристаллизацией) станут использоваться в горячих узлах и элементах двигателя. Применение стальных сплавов в конструкции двигателей будет постепенно уменьшаться, а вместо них увеличится доля сплавов на основе титана и никеля [13]. Многие иностранные фирмы предполагают также использование теплозащитных покрытий, жаростойких и легких керамических материалов в конструкции турбины двигателя, в частности для сопловых лопаток.  [c.219]

Рассмотренные выше особенности борных волокон явились причиной того, что их применяют главным образом в сочетании с металлическими, в частности алюминиевыми, матрицами. Композиционный материал алюминий — борные волокна формуют прессованием листов пре-прега при температуре выше 500 °С, как при получении металлокомпо-зитов на основе углеродных волокон. Композиционный материал алюминий — борные волокна можно применять при значительно больших температурах, чем композиционные материалы на основе полимерной матрицы. На рис. 8.3 показана зависимость от температуры прочности при растяжении различных композиционных материалов на основе алюминия и борных волокон [8]. Как видно из рисунка, высокая прочность таких  [c.269]

Композиционные материалы (КМ). Самым распространенным композитным материалом является железобетон, широко используемый в строительстве. В нем металлические стержни являются армирующими наполнителями, а бетон связующим компонентом - матрицей. В машиностроении используются композиционные материалы, в которых связующими компонентами являются металлы (МКМ), керамика (ККМ), полимеры (ПКМ). В данном разделе рассмотрены вопросы сварки МКМ. В качестве наполнителей в металлических композитах используют сплавы алюминия, магния, меди, никеля, тит)ана и т.д. В качестве армирующих материалов - высокопрочные материалы углеродные, борные, карбидокремниевые волокна, нитевидные кристаллы, металлическую проволоку. Армирующие материалы в композитах находятся в виде частиц различной дисперсности (дисперсионно-упрочненные ДУКМ), волокон длинной или короткой резки или слоев (рис. 15.1).  [c.547]

ВЫЙ материал), борные и углеродные волокна. При создании жаропрочных композиционных материалов на основе никеля используется вольфрамовая проволока. Наиболее широкое применение в качестве матрицы волокнистых композиционных материалов получил алюминий и его сплавы (АМгб, В95, Д20 и др.). Наиболее дешевым и доступным упрочняюш,им материалом является стальная проволока. Материал марки КАС-1 содержит 40 % (по объему) стальной проволоки диаметром 0,15-0,3 мм. При этом прочность материала достигает 1600 МПа, что значительно превосходит прочность высокопрочных алюминиевых сплавов.  [c.265]

Алюминий, никель, магний, кобальт и медь считаются совместимыми с углеродными волокнами. Однако сильные карбидо-образователи (например, титан) могут использоваться в качестве матрицы углеметаллических композиционных материалов лишь. при наличии эффективных диффузионных барьеров на границе раздела матрицы и волокна.  [c.339]

В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

Для получения плотных алюминиевых покрытий на углеродных волокнах был с успехом опробован метод вакуумного напыления, однако при этом способе металлизации существует значительный экранный эффект, и для получения равномерных покрытий по всему сечению жгута необходимо перед напылением укладывать жгут в тонкую ленту. Из покрытых алюминием углеродных волокон методом горячего прессования получили компактные образцы композиционного материала. Распределение волокон в материале в целом оказалось достаточно равномерным, однако механические характеристики материала были невысокими, очевидно из-за недостаточной прочности связи матрицы и волокна (наблюдалось отслаивание алюминия от волокон). Более успешные эксперименты проведены по алюминированию волокон методом химического осаждения при термическом разложении триизобутила алюминия экранный эффект в этом случае не проявляется и покрытия получаются однородными по всему сечению углеродного жгута. Были сделаны также попытки изготовления углеалюминиевого материала из покрытых таким образом волокон методами горячего и холодного прессования, но из-за малого количества полученного материала его свойства не определялись.  [c.369]

Большинство материалов, называемых композиционными содержат в качестве армирующих наполнителей волокна. К ним в первую очередь относятся материалы на основе стеклянных волокон и стеклянных тканей и полиэфирных или эпоксидных связующих и изделия, получаемые намоткой непрерывных стеклянных волокон, пропитанных этими связующими, а также композиции на основе асбестовых волокон и фенолсформальдегидных связующих и термопласты, такие как полистирол и полиамиды, наполненные рубленым стеклянным волокном. В последнее время щироко развивается применение борных и углеродных волокон в сочетании с прочными эпоксидными или термостойкими полиимидными связующими. Сверхпрочные нитевидные монокристаллы окиси алюминия, карбида кремния и др., так называемые усы , могут быть перспективными в производстве композиционных материалов для аэрокосмической промышленности [1-3].  [c.262]

Салибекое С.Е., Заболоцкий А.А., Турченков В.А. и др. Факторы, влияющие на формирование структуры и свойства композиционных материалов системы алюминий-углеродное волокно // Порошковая металлургия. 1977. № 2. С. 58-64.  [c.270]


Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используютлегкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.  [c.171]

Свойства композиционных материал лов на основе вискернзованных волокон. Этот класс материалов был экспериментально изучен на угле- и стеклопластиках. Были исследованы материалы, изготовленные на основе ленты из углеродных волокон, стеклоткани сатинового переплетения, жгутов из стекло- и углеродных волокон. Арматурой для изготовления стеклопластиков служили непрерывные волокна из алюмоборосиликатного стекла, а также стеклоткань ТС-8/3-250, подвергавшаяся вискеризации нитевидными кристаллами двуокиси титана ТЮ2 и нитрида алюминия A1N. В качестве арматуры для углепластиков были использованы жгуты из углерод-  [c.207]


Смотреть страницы где упоминается термин Композиционные материалы алюминий — углеродное волокн : [c.193]    [c.20]    [c.250]    [c.373]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.362 , c.379 ]



ПОИСК



Алюминий — бор (волокно)

Волокна

Волокна углеродные

Композиционные материалы

Материалы Алюминий

Материалы волокнами

Материалы углеродными



© 2025 Mash-xxl.info Реклама на сайте