Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

119 - Устойчивость тонкая упругая - Критические нагрузки

В теории устойчивости упругих пластин характерным является одно критическое значение нагрузки Ру , при превыщении которого начальное состояние идеально правильной пластины перестает быть устойчивым. В теории устойчивости тонких упругих оболочек выделяют два характерных значения нагрузки  [c.214]

Прямолинейный стержень. Критическая нагрузка как минимум функционала. Применение энергетического метода, изложенного в предыдущем разделе, к анализу устойчивости равновесия континуальной системы рассмотрим на примере стержня. Пусть тонкий прямолинейный стержень из линейно упругого материала находится под действием сил, направленных вдоль его оси и распределенных произвольным образом по его длине (рис. 18.58, а во внутренних точках оси может быть приложена не одна сила, как показано, а несколько). Предполагается, что стержень закреплен в пространстве от перемещений как жесткого целого. Прямолинейная форма равновесия возможна при  [c.386]


На рис. 6.10, б показано тонкое упругое кольцо, сжатое жесткой обоймой (такого типа нагружение может быть вызвано, например, нагревом кольца). На рис. 6.10, в изображено тонкое упругое кольцо, стянутое гибкой нитью. В обоих случаях нагрузка, воспринимаемая кольцом, не гидростатическая, причем поведение колец при потере устойчивости даже качественно отлично от поведения кольца, теряющего устойчивость под действием гидростатической нагрузки [39]. Можно привести и другие примеры, когда по формуле для критической гидростатической нагрузки получается неверный результат. Значительно труднее указать практическую задачу, в которой использование формулы (6.20) строго обосновано. Единственный такой пример — это расчет на устойчивость длинной цилиндрической трубы под действием внешнего давления.  [c.237]

Классический продольный изгиб при сжатии длинного тонкого стержня показан на рис. 1. В действительности линия приложения нагрузки не совпадает с продольной осью стержня, вследствие чего возникает изгибающий момент относительно его центра и стержень изгибается. При незначительных нагрузках для сохранения прямолинейности стержня и возвращения его в исходное положение при небольших боковых смещениях достаточно упругого противодействия, т. е. система будет находиться в стабильном равновесии. При увеличении нагрузки до некоторого значения достигается состояние нейтрального равновесия, при котором изгибающие силы и силы упругого противодействия уравновешены, и любые боковые смещения стержня не нарушают его стабильности. При дальнейшем увеличении нагрузки происходит потеря устойчивости стержня, так как малейшая несоосность вызывает катастрофический продольный изгиб его, заканчивающийся течением материала или разрушением стержня. Критическая нагрузка, необходимая для нейтрального равновесия, зависит от соотношения между длиной и толщиной стержня, модуля упругости материала стержня и способа приложения нагрузки к его концам.  [c.9]

Ниже рассмотрен достаточно узкий класс задач устойчивости тонких гладких упругих оболочек, находящихся под действием консервативной поверхностной и краевой нагрузки. Использование статического критерия устойчивости приводит к линейным краевым задачам на собственные значения, для решения которых эффективно применяются асимптотические методы. В результате построены приближенные асимптотические формулы для ожидаемых форм потери устойчивости и соответствующих им критических нагрузок. Рассматриваются оболочки с различной формой срединной поверхности, находящиеся в различных условиях нагружения и закрепления.  [c.13]

Упругая устойчивость сжатых элементов корпуса — другой важный фактор. Она контролируется жесткостью элементов и модулем упругости материала. Если толщины выбираются на основании прочности стали при растяжении, то элементы из высокопрочной стали более тонкие, а их критические нагрузки меньше. Так как большинство конструктивных элементов в судах подвергается чередующимся растягивающим и сжимающим нагрузкам, упругая устойчивость должна всегда приниматься во внимание. На практике это учитывается либо дополнительной жесткостью, либо увеличением толщины листов, и способствует экономичному использованию высокопрочной стали.  [c.410]


Критическую нагрузку для сжатого продольными силами стержня можно найти непосредственно, исследовав поведение идеального стержня, который является идеально прямым и сжимается центрально приложенными силами (линии действия сил проходят через центр тяжести поперечного сечения). Рассмотрим сначала тонкий идеальный стержеНь длиной Ь, нижний конец которого заделан, а верхний свободно перемещается (рис. 10.4, а). Материал стержня считается линейно упругим. Если осевая нагрузка Р не превышает критического значения, то стержень остается прямым и претерпевает только осевое сжатие. Такая прямолинейная форма равновесия является устойчивой это означает, что если приложить поперечную силу и создать небольшой прогиб, то при устранении поперечной силы прогиб исчезает и стержень вновь становится прямым. Однако при постепенном увеличении Р будет достигнуто состояние нейтрального равновесия, когда нагрузка Р станет равной Р р.  [c.392]

В заключение заметим, что методы теории упругости нужно применять к задачам о продольном изгибе стержня с некоторой осторожностью, потому что они дают хорошие результаты, если мы рассматриваем достаточно большие деформации только тогда, когда имеем дело с длинными и тонкими стержнями. Для стержней такого рода первая критическая сила имеет практическое значение, ибо ее величина близка к значению той нагрузки, при которой стержень переходит за предел пропорциональности. Мы рассмотрели задачу о стержне, которая является частным случаем ряда задач, связанных с устойчивостью упругих систем. Отличительной чертой этих задач является то, что, как показывает рис. 115, нагрузка и соответствующее ей перемещение не пропорциональны между собой.  [c.578]

В главе I отмечалось, что впервые задача об устойчивости оболочек при односторонних кинематических ограничениях сформулирована [561 следующим образом пусть тонкая, шарнирно опертая по торцам цилиндрическая оболочка помещена без зазора в сплошную обойму и нагружена осевой сжимающей силой. Требуется найти верхнюю критическую нагрузку. В качестве модели упругой среды обоймы используется винклерово основание, сопротивляющееся вдавливанию оболочки и не сопротивляющееся ее отрыву. Именно такую постановку задачи использовали авторы [7, 1051, получившие основные экспериментальные результаты.  [c.89]

При исследовании ползучести тонких оболочек и решении вопросов устойчивости может иметь значение учет нелинейных слагаемых (квадратов углов поворота) в выражениях для деформаций. Одна из первых работ в этом направлении была выполнена А. С. Вольмиром и П., Г. Зыкиным [31, 32]. Здесь рассматривалась квадратная цилиндрическая панель с начальным прогибом при продольном сжатии. Для решения задачи о прощелкивании панели в условиях ползучести используется. приближенное решение нелинейной упругой задачи панели с начальным прогибом. В процессе ползучести этот начальный прогиб растет и рассчитывается с помощью некоторого приближенного приема, не учитывающего перераспределения напряжений в процессе ползучести. За счет переменного начального прогиба меняется значение верхней критической нагрузки, определяемой уравнениям-и упругой задачи, соответствующее ее прощелкиванию. Когда ве-,личина прогиба достигает значения, при котором соответствующая верхняя критическая нагрузка для упругой панели станет равной действующей нагрузке, произойдет прощелки-вание панели. Существенным результатом этой работы явилось определение критического времени, по истечении которого оболочка скачком перейдет в новое состояние. Учет перераспределения напряжений в процессе ползучести в этой схеме при использовании, как и в [32], теории старения проводился в работе [79]. Аналогичные задачи для сжатой цилин- дрической панели при нелинейной ползучести рассматривались в [60, 95].  [c.272]

В заключении второй части книги рассматриваются малые прогибы тонких упругих оболочек, излагается линеаризированная теория устойчивости оболочек. Приведенные здесь общие уравнения устойчивости цилиндрических оболочек в перемещениях, вызванных потерей устойчивости, известны как уравнения Тимошенко. Дается решение этих уравнений для случая внешнего поперечного давления и равномерного продольного сжатия. Последний случай особенно интересен. Автором впервые изучена теоретически неосесимметрвганая форма потери устойчивости и показано, что в этом случае при выпучивании по коротким продольным волнам выражение для продольной критической нагрузки совпадает с формулой для критической нагрузки при симметричном волнообразовании. Здесь описан также метод расчета на устойчивость оболочек за пределом упругости. Наконец, излагается общее решение уравнений малых осесимметричных деформаций сферической оболочки и их щ)имвнение к различным случаям нагружения.  [c.7]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]


При проектировании трехслойных панелей, особенно с маложестким заполнителем и тонкими внешними слоями, необходимо илиеть в виду, что сжатые внешние слои таких панелей могут терять устойчивость и отрываться от заполнителя (при некоторых технологических несовершенствах — например, при волнистости внешних слоев — склейка внешних слоев с заполнителем может разрушаться даже до потери устойчивости внешними слоями). При расчете внешних слоев на устойчивость или при расчете заполнителя и его склейки с внешними слоями на прочность, внешние слои следует рассматривать как пластинки на упругом основании (роль основания играет заполнитель). Понятно, что на величину критической нагрузки местной потери устойчивости сильно влияет модуль упругости заполнителя в направлении, нормальном к внешним слоям. При этих расчетах имеет существенное значение учет взаимных смещений внешних слоев, связанных с изменением расстояния между этими слоями.  [c.246]


Смотреть страницы где упоминается термин 119 - Устойчивость тонкая упругая - Критические нагрузки : [c.97]    [c.575]    [c.342]    [c.370]    [c.134]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.209 ]



ПОИСК



311 —Устойчивость критические 318 — Устойчивост

Нагрузка критическая

Нагрузки Устойчивость

Устойчивость упругих тел



© 2025 Mash-xxl.info Реклама на сайте