Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

72, равновесия 69 - Функция собственных колебаний

Балка - Деформация сдвига при малом прогибе 18 - Изгиб 58, 67 - Инерционная характеристика при колебаниях 71 - Краевой эффект деформации 23 - Метод Максвелла - Мора определения малых прогибов 19 - Модель основания Винклера 21 - Нагрузка предельная 6.0, 61 -Несущая способность 59 - Универсальная формула для определения малых прогибов 19 - Уравнение изгибных колебаний 72, равновесия 69 - Функция собственных колебаний 100  [c.616]

Согласно этим теоремам задача об устойчивости равновесия или стационарного движения твердого тела с жидкостью приводится к задаче минимума потенциальной энергии V или измененной потенциальной энергии W системы. В случае полного заполнения жидкостью полости выражения V ш W являются функциями конечного числа переменных qj. В случае частичного заполнения полости V и W представляют собой функционалы, зависящие от формы объема т и свободной поверхности жидкости, а также от положения тела. Так как свойство минимума является локальным, то для строгого решения задачи минимума, за исключением особых случаев, можно ограничиться рассмотрением величин второго порядка малости. Поэтому для решения этой задачи можно использовать методы теории малых колебаний, если смещение свободной поверхности от положения равновесия представить в виде ряда пф системе собственных функций соответствующей краевой задачи. Таким методом был решен ряд конкретных задач о минимуме V и W (Н. Н. Моисеев, 1952 Г. С. Нариманов, 1956 В. В. Румянцев, 1962). Однако вычисления при  [c.33]


Классификация электронных состояний многоатомных молекул по типам различных точечных групп основана на допущении, что ядра фиксированы в положении равновесия (см. выше). Если ядра фиксированы в положении, отличающемся от равновесного, и если симметрия в неравновесном положении иная, чем в равновесном, то и типы электронных волновых функций будут иными. Однако ясно, что электронные собственные функции в двух конфигурациях должны однозначно соответствовать друг другу. Поэтому можно, по крайней мере при малых смещениях (колебаниях), классифицировать электронные волновые функции по типам равновесных конфигураций. Тем не менее следует заметить, что в вырожденных электронных состояниях при определенных смещениях от равновесной конфигурации потенциальные поверхности могут расщепляться, так как в смещенных конфигурациях симметрия может быть ниже и вырожденные типы могут не существовать (разд. 2). Проблема корреляции между типами различных точечных групп рассмотрена в гл. III, разд. 1.  [c.19]

Здесь к = с/т — квадрат собственной частоты колебаний груза, 5 — отнесенный к единице массы импульс, J(i) — импульсивная функция первого порядка, X — отклонение центра тяжести груза от положения равновесия. Из изображения уравнения (2.44) при начальных условиях а О) = х и х(0) = Од  [c.89]

Наконец, в некоторых системах, не являющихся идеальными ни в каком приближении, тепловое движение можно представить как движение отдельных возбуждений типа свободно распространяющихся волн, которые (в случае, когда оНи достаточно долго живут или,, что то же, слабо затухают) называют квазичастицамй. Если эти коллективные возбуждения (или собственные колебания) слабо рассеиваются друг на друге, то их совокупность образует своеобразный идеальный газ, берущий на себя функции обеспечения теплового движения в равновесной системе. Идея такого подхода в известной степени спровоцирована успехом статистической теории равновесного электромагнитного излучения (см. 4), блестяще завершенной Максом Планком, — системы, в которой роль частиц ифают осцилляторы свободного электромагнитного поля, которые мы называем фотонами, они же — плоские волны, число которых в том непрерывном пространстве, к которому мы привыкли, не ограничено (длина волны может доходить до нуля), и которые реально образуют идеальную систему, так как то взаимодействие фотонов друг с другом, которое индуцируется /фугими квантовыми полями, не может служить релаксационным механизмом установления в системе состояния термодинамического равновесия (см. том 1, гл. 1, 5) в тех условиях, которые доступны нам (если не для создания, то хотя,бы для наблюдения) в настоящее время.  [c.139]

Метод собственных колебаний основан на выведении среды упругого равновесия с помощью кратковременного импульса и пО следующей регистрации возникающих колебаний. На практике суТ метода заключается в возбуждении колебаний сопряженной систем плита-грунт с помощью ударов в бетонный блок или стальную плитУ Зарегистрированный сигнал (колебания в функции времени) подверг ется спектральному анализу с целью определения частотной характ ристики, а затем частоты, при которой характеристика достигает своеГ  [c.134]


В случае отсутствия внешней нагрузки система, выведенная из состояния равновесия, будет совершать затухающие колебания, описываемые действительной частью экспоненциальной функции х=Хд ехр ( (1)х—п) t, где u)i=(p —тРуз — круговая частота колебания p = lm) f — собственная частота системы без трения n=4]l2m=b(xiJ2 r Xq — начальное перемещение массы 8 = = л1г]/ши)1 — логарифмический декремент колебаний. При малых коэффициентах вязкого трения ш —р, Ь=щ1тр=%г р1С. Добротность системы Q определяется отношением амплитуды силы инерции или сжатия пружины к амплитуде силы вязкого трения  [c.18]

Выше речь шла об устойчивости равновесия жидкости в горизонтальном слое. Если жидкость заполняет полость произвольной формы, то задача с помощью метода Канторовича также может быть сведена к интегрированию системы обыкновенных уравнейий первого порядка с периодическими коэффициентами для амплитуд. В качестве базисных координатных функций можно выбирать, например, точные или приближенные собственные функции задачи об устойчивости при отсутствии модуляции. При этом в первом приближении мы приходим к канонической системе вида (33.18) (пример вертикального кругового цилиндра, совершающего гармонические колебания вдоль оси, рассмотрен в Р]).  [c.242]

Стохастический режим. В точке пересечения критических кривых Rl и Ra (рис. 44) мнимую ось пересекают две пары собственных значений (х,, х,) и щ, Xj), принадлежащих соответственно спектрам собственных значений матриц odi и aS . Поэтому в области П1 на диаграмме устойчивости обе х- и у-подсистемы становятся неустойчивыми. Поскольку собственные частоты колебаний =. = Imxi и 2 = ImXj, вообще говоря, несоизмеримы, в окрестности положений равновесия при надкритических значениях R можно ожидать рождения двумерных инвариантных торов, т.е. д (т) и у(х) будут задаваться двоякопериодическими векторными функциями вида г1)( ,т, ат), где г з( , и) — 2я-периодическая функция по каждому из аргументов. На рис. 49 и 50 представлены результаты численного интегрирования системы (6), (7) в точке а = 2,6, R = 40, принадлежащей области III. Интегрирование проводилось на ЭВМ БЭСМ-6 методом Рунге — Кутта без контроля точности интегрирования с шагом Дт = 0,002, что по порядку величины составляет 10 T i (Г, = = 2я/тах ( j, а))> и с заданной точностью интегрирования, равной 0,1%. Основной результат оставался неизменным.  [c.153]

Решение в виде тригонометрического ряда. Перемещение и, за-висящее от координаты х и времени i, должно быть такой функцией X и которая удовлетворяет дифференциальному уравнению в частных производных (88). Частное решение этого уравнения легко найти, приняв во внимание 1) что в общем случае любые колебания системы можж> ралложить по собственным формам колебаний и 2) когда система совершает колебания одной из собственных форм, все точки совершают простые гармонические колебания и движутся в общем темпе, одновременно проходя через положения равновесия. Допустим теперь, что стержень совершает колебания одной из собствсппых форм, частота которых равна р/2л тогда решение уравнения (88) следует взять в виде  [c.291]


Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.100 ]



ПОИСК



Колебания собственные

Собственные функции

Собственные функции собственные функции)



© 2025 Mash-xxl.info Реклама на сайте