Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

9 > пределы состава

Магний имеет минимальную величину обобщенного стати- стического момента электронов по сравнению с другими компонентами, входящими в состав бериллиевых бронз, и повышенной энергией связи с вакансиями 0,3 эВ). Первая из указанных характеристик определяет возможность адсорбции магния на внутренних физических поверхностях, а вторая — увеличенную степень пересыщения закаленного а-твердого раствора вакансиями. В итоге распад твердого раствора при старении становится практически полностью непрерывным, а его скорость уменьшается. При этом достигается большая равномерность распределения частиц выделений и растет сопротивление развитию микродеформаций. По данным испытания многих плавок бронзы, содержащей 0,1% Mg (Бр.БИТ 1,9 Мг), предел упругости (Оо оог) составляет 75—80 кгс/мм, тогда как у бронзы того же состава, йо без магния, предел упругости 0 о2= 60- -65 кгс/мм .  [c.38]


А — по химическому составу и механическим свойствам с одновременным испытанием гидравлическим давлением, вычисленным, по формуле ГОСТ 3845-47 при допускаемом напряжении Я = 0,9 от предела текучести  [c.282]

Разобьем поперечное сечение колонны на девять ячеек и в пределах этих ячеек выберем узловые точки. Узловые точки I. 4, 7 к 3, 6, 9 лежат на поверхностях, температуры которых поддерживаются постоянными, следовательно, / =/< = /7= 100 °С и (з = <6 = <9 = = 200 С. Переменную температуру будут иметь только три узла 2, 5, 8. Составим балансовые уравнения этих узлов. Для центрального узла 5 уравнение баланса (14.18) уже записано.  [c.116]

Составим уравнение равновесия для нижней части бруса (рис. I.I, б), учитывая,что переменная Z изменяется в пределах (9 Z /  [c.5]

Механические свойства стекол зависят от химического состава и термической обработки. Высокие механические свойства характерны для кварцевых и бесщелочных стекол, а более низкие — для стекол, содержащих РЬО, КгО. НагО. Предел прочности силикатного стекла при изгибе равен 7—9,5 М /зС для тянутого, 4—5 Мн м для литого необработанного, 3—4 Мн м для прокатного необработанного и 9—16 Мн м для закаленного.  [c.393]

Характер зависимости степени черноты от температуры, несмотря на различные наполнители в составе этих покрытий, в общем одинаков. При температурах до 150°С степень черноты лежит в пределах 0,9—0,95, с нагревом излучательная способность резко падает и при 500°С S становится равной 0,6—0,65.  [c.92]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Полагая, что осевое напряжение в поперечном сечении цилиндрической трубы при наличии одного лишь внутреннего давления постоянно, составить дифференциальное уравнение для определения предела пластического сопротивления, пользуясь теорией энергии формоизменения. Упрочнением материала пренебречь. Вычислить Ра. пл ДЛЯ р = Ь а=1,9.  [c.231]

Пример. Определить необходимый объем испытаний материала с y=0.08 при условии, что предельная относительная ошибка в определении предела выносливости для вероятности Я=0,01 и при доверительной вероятности Р, = 0,9 составит Др = 0,05 по табл. 2 2о,95= 1.64. Из приведенных выще данных для Я=0,01 берем ф(Р)=8. По формуле (7) находим  [c.53]

Имеются опубликованные результаты исследований влияния облучения на натуральный каучук при статической или динамической нагрузке. Они показывают, что натуральный каучук хорошо сохраняет упругость, имеет хорошие гистерезисные свойства и стойкость по отношению к изменению остаточной деформации при изгибе в процессе облучения [9, 19]. Уменьшение предела прочности и относительного удлинения при облучении натурального каучука, находящегося в напряженном состоянии, происходит значительно быстрее, чем при облучении без нагрузки. Остаточное сжатие цилиндрических образцов из каучукового вулканизата, облученных в отсутствие нагрузки, уменьшилось на 55%, а остаточное сжатие сегментов колец, находившихся во время облучения в сжатом состоянии, увеличилось с 6 до 80% при максимальной дозе. При двух еще более высоких дозах остаточная деформация при изгибе на 180° составила 100%.  [c.77]


Разрезку модели производили диском на шлифовальном станке с охлаждением. Срезы наблюдались и фотографировались в полярископе с диффузором. Картина полос осевого среза, полученная при светлом поле, воспроизведена на фиг. 10.2. Среднее напряжение в вершине выточки было в 2,19 раза больше номинального напряжения, вычисленного по ослабленному сечению. Коэффициент концентрации по Нейберу для выточки с отношением а/р = 3,9 составил 2,15. Экспериментальные результаты сопоставляются с теоретическими на фиг. 10.3 и 10.4. Отклонение экспериментальных величин от теоретических нигде не выходило за пределы 10%. В тех случаях, когда отклонение превосходило 5%, абсолютные погрешности были довольно малы.  [c.281]

Северная Америка. США первые начали разрабатывать природный газ в больших масштабах, и сейчас на их долю приходится почти половина мировой добычи газа. Однако в США уже ощущается нехватка газа, несмотря на его импорт из Канады. Планируется импорт СПГ из Африки. Для освещения проблемы нехватки газа и многосторонних усилий, необходимых для уменьшения этой нехватки, обратимся к материалу, опубликованному в 1974 г. [9]. Общее потребление природного газа в 1973 г. составило 723 млрд, м , из них примерно 550 млрд, м поступило с газовых месторождений на суше, примерно 140 млрд, м — с морских месторождений, а примерно 30 млрд, м обеспечил импорт. Ожидалось, что добыча на известных месторождениях уменьшится с 692 млрд, м в 1973 г. до 407 млрд, м в 1985 г. К тому времени, как считалось, новые месторождения обеспечат 378 млрд, м в год — в том числе 31 млрд, м поступит с северных склонов Аляски — и таким образом компенсируют падение добычи. Дополнительно к этому можно было бы добыть 145 млрд, м в год при наличии необходимых стимулов, включая более высокие цены и более интенсивную продажу перспективных нефтеносных участков федеральными властями. Предполагается, что возможно добывать еще 31 млрд, м газа в год из малопроницаемых пластов при условии интенсификации добычи с помощью подземных ядерных взрывов. Возможность добыть в США в 1985 г. 843 млрд, м газа определена, можно сказать, в результате тщательного технического исследования. Однако достижение этого уровня добычи газа, как и повышение добычи нефти с 490 млн. т в 1973 г. до 605 млн. т в 1985 г., зависит не только от наличия экономических стимулов. Оно зависит и от того, удастся ли привлечь средства и выполнить необходимые работы. Авторы исследования считают, что как объем необходимых средств и работ, так и уровни добычи нефти и газа представляют собой верхний достижимый предел при условии использования существующих технических возможностей, природных ресурсов, возможности своевременного устранения административных препятствий и препятствий, связанных с государственным регулированием отрасли, и эффективного функционирования экономической системы страны, которая должна обеспечить стимулы для достижения желаемых конечных результатов [9]. Объем необходимых работ и средств, определенный в этом исследовании, показан в табл. 42. Данные этой таблицы и приведенное выше мнение показывают, как много надо сделать для развития добычи нефти и газа, на которое потребуется затратить с 1973 г. по 1985 г. примерно 200 млрд. долл.  [c.158]

Твердость легкоплавких отливок колеблется от 5 до 22 по Бринелю, а предел прочности — от 2 до 9 кГ/мм и относительное удлинение — от О до 300%. Низкая температура плавления, хорошая жидкотекучесть, а также хорошие адгезионные и антифрикционные свойства (некоторых составов) обусловили широкое применение легкоплавких сплавов в технике для изготовления припоев, подшипников, пуансонов, матриц, моделей, шаблонов, стержней, деталей узлов машин и аппаратов, контрольных инструментов, заливки абразивных и алмазных материалов, в качестве форм для литья пластмасс и смол, в зубопротезной технике, пломб, дублирования оттисков, уплотнителей, удерживающих прокладок, предохранительных легкоплавких пробок в противопожарном оборудовании и баков (цилиндров) высокого давления, автоматических выключателей для газовых и электрических систем нагревания воды.  [c.261]

Цементация. Процесс осуществляется обычно в интервале температур 860 — 960" С (выше точки Ас . Длительность выдержки в зависимости от состава цементуемой стали, способа цементации и требуемой глубины слоя, которая колеблется в пределах от 0,15 до 2,5 мм, составляет от 1 до 30 ч. В редких случаях, например газовой цементации крупных подшипниковых колец, глубина слоя может достигать 8 мм и длительность выдержки 7—9 суток.  [c.96]

При амплитуде напряжения цикла, соответствующей примерно пределу текучести данных образцов (а =245 МПа), сплошность покрытия нарушается уже через 100—200 цикл от начала испытаний. При снижении амплитуды напряжения до о = 0,95 нарушение сплошности покрытия не происходит и после 10 цикл. Критическая деформация образцов, снятых с испытания через 2 10 — 10 цикл, составила 1,8—1,9 %, что совпадает с первоначальной критической деформацией данного покрытия. Испытания, проведенные на образцах стали СтЗ, окрашенных по второй схеме и выдержанных в морской воде в течение 12 мес, также не выявили влияния предварительного циклического деформирования при амплитудах деформации, меньшей критической (1,0-1,1 %).  [c.188]


Из экспериментальных данных следует, что с изменением химического состава в пределах сертификационной группы наблюдается значительное изменение в склонности материала к радиационному распуханию. Например, при исследовании оболочек твэлов из деформированной на 10% стали 316 двух плавок (В и С) после облучения в реакторе Рапсодия обнаружено, что распухание оболочки С после облучения при температуре 550° С флюенсом 9,4 н/см составляет примерно 1%, в то время как распухание оболочки В, облученной при тех же условиях,— около 11% [192]. Различие в поведении распухания связывается с различным содержанием фосфора и других примесей.  [c.174]

Перегрев. Чугун при его перегреве до некоторого предела получает измельчённую структуру, что ведёт к повышению предела прочности. При перегреве выше определённого предела происходит выделение графита с дендритной ориентацией, вследствие чего ухудшаются его статические механические свойства. Пример изменений механических свойств чугуна с повышением температуры перегрева приведён на фиг. 41 [9]. Критическая температура перегрева зависит от состава чугуна, как это видно из диаграммы на фиг. 42. Диаграммы фиг. 41 и 42 отражают только качественные результаты влияния температуры перегрева, полученные при переплавке чугуна в электрической печи. При переплавке в вагранке чугуна с меньшим содержанием кремния, чем указано на фиг. 42, критическая  [c.31]

Механические свойства стекла. Прочностные свойства стекла колеблются в значительных пределах в зависимости от его состава. Так, для силикатного стекла предел прочности при растяжении равен от 3 до 9 кг/мм , для кварцевого — от 12 до 12,5 кг/мм - . Предел прочно с т и п р и сжатии колеблется от 60 до 130 кг млА.  [c.375]

Дуплекс-процесс вагранка — пламенная печь применяется также для плавки ковкого чугуна [1]. Пламенная печь служит для нагрева металла и его доводки до заданного химического состава. В печи угорает 25 —30% углерода, 10—15% марганца и в меньшей степени кремния. Недостающее количество кремния и марганца добавляется в печь в виде ферросплавов. Расход топлива в вагранках—9—11% к весу металла, расход мазута в печи колеблется в. пределах 16 — 19%.  [c.182]

Немагнитные составы Круппа (№ 23 — мягкий и № 24 — твёрдый) содержат до 5<1/о никеля снижение достигнуто за счёт увеличения марганца до 9%. Магнитная проницаемость составов повышена до 1,5, устойчивость магнитных свойств сохраняется в пределах температур до 400° С.  [c.57]

Все изложенное выше относительно расчета МИЭ справедливо лишь в отношении одного стержня. Но обычно требуемую величину демпфирующего момента не удается обеспечить одним стержнем, и тогда приходится учитывать взаимное влияние стержней и решать задачу оптимального их размещения на КА. Дело все в том, что параллельные стержни, расположенные рядом, размагничивают друг друга. Чем меньше расстояние между ними а, тем больше взаимный размагничивающий эффект и тем меньше их общий демпфирующий момент по сравнению с удвоенным моментом отдельно взягого стержня. Подобное размагничивающее действие равносильно увеличению коэффициента размагничивания стержней, поскольку систему из двух параллельных стержней можно мыслить в определенном смысле как один стержень меньшего удлинения. В пределе, когда стержни совмещены друг с другом (а = 0), удлинение уменьшится в У2, поскольку при сохранении длины общая площадь поперечного сечения увеличивается ровно вдвое. Поэтому следует ожидать увеличения коэффициента размагничивания N, которое в соответствии с (9.25) должно составить величину  [c.238]

По химическому составу различают стали углеродистые и легированные. Содержание углерода в конструкционных углеродистых сталях составляет 0,06—0,9%. Углерод является основным легирующим элементом сталей этой группы и определяет механические свойства и свариваемость их. В зависимости от содержания углерода конструкционные углеродистые стали могут быть низкоуглеродистые (С 0,25%), среднеуглеродистые (С= =0,26-5-0,45%), высокоуглеродистые ( =0,46-5-0,76%). По качественному признаку различают углеродистые стали обыкновенного качества (ГОСТ 380—71) и качественные (ГОСТ 1050—74). Качественные стали имеют пониженное содержание вредных примесей (серы). Примером низкоуглеродистой стали обыкновенного качества, широко используемой в сварных конструкциях, является сталь БСтЗ, содержащая 0,14—0,22% С, 0,40—0,65% Мп, 0,12—0,30% 31, с пределом прочности ов=380-5-490. МПа и относительным удлинением 6=23-5-26%. В качестве примера углеродистой качественной стали можно назвать сталь 20, содержащую 0,17—0,24% С, 0,35— 0,65% Мп, 0,17—0,37% 31, с пределом прочности ав=420 МПа и относительным удлинением 6=26%.  [c.121]

Было установлено, что основной металл разрушенной трубы по химическому составу соответствовал техническим условиям, однако имел пониженную ударную вязкость (при 0°С — 4,05 кгм/см , а при минус 40°С — 3,3 кгм/см , тогда как техническими условиями регламентируются значения не менее 8 и 3,5 кгм/см соответственно). Металл продольных заводских швов по химическому составу также соответствовал требованиям технических условий, а по механическим свойствам (особенно металл ремонтных швов) имел недопустимо высокое временное сопротивление разрыву (до 750 МПа при максимально допустимых по техническим условиям 690 МПа) и низкую пластичность (относительное удлинение для ремонтных швов составляло 2,9% при минимально допустимых 18%, а ударная вязкость при температурах 0 и минус 40°С — 1,45 и 0,69 кгм/см соответственно. В заводских продольных швах имелось много микропор и мелких шлаковых включений, являющихся источниками зарождения микротрещин, величина которых, однако, соответствовала техническим условиям. Металл поперечного монтажного шва содержал хрома на 0,18% больше верхнего допустимого предела и имел неудовлетворительные характеристики пластичности (ударная вязкость при температуре 0°С — 4,96 кгм/см а при минус 40 С — 1,36 кгм/см ). В связи с повышенной чувствительностью стали 14Г2САФ к перегреву в заводских продольных ремонтных швах и поперечных автоматических монтажных швах присутствовали участки металла с крупными ферритными зернами, а в зоне термического влияния — участки с мартенситной структурой. Эти участки металла имели низкую стойкость к коррозионному растрескиванию.  [c.59]

Приведенные данные по влиянию состава котловой воды на критические солесодержания и 1/,мин охватывают в основном интервал давлений от 1,67 до 8,9 МПа. Для более высоких давлений в первом приближении значения 5кр и Rv,uim могут быть установлены экстраполяцией. Для низких давлений критические концентрации определялись при испытаниях, проводимых на испарителях тепловых электростанций. В зависимости от состава концентрата и нагрузки 5кр на этих аппаратах, работающих обычно при давлениях до 0,4 МПа, находятся в пределах 6000—10 000 мг/кг. При давлении р = 0,1 МПа нагрузка Rv, МИН С0СТЗВЛЯ6Т ПрИМбрНО 1800 м7(мЗ-ч).  [c.121]

Начальный этап развития трещины в диске V ступени по межпазовому выступу был связан с формированием сглаженного рельефа без усталостных бороздок, что свидетельствовало о разрушении по механизму многоцикловой усталости. Далее имели место на длине около 1 мм до границы выявленной трещины блоки усталостных бороздок (рис. 9.44). Шаг блока составляет около 0,1-0,2 мм, а усталостные бороздки регулярно возрастают и убывают в блоке и колеблются в пределах 0,3-2,0 мкм. Характер развития трещины указывает на то, что ее развитие происходит на значительное расстояние за один цикл испытания в составе двигателя на стенде. При шаге бороздок 2,0 мкм развитие трещины реализуется в области малоцикловой усталости и свидетельствует о достижении ситуации, близкой к циклической вязкости разрушения материала.  [c.519]


За пределами своей страны французскимикомпаниями было добыто в 1973 г. 86 млн. т нефти, из них (в %) в Ираке — 21,8, Абу-Даби — 18,6, Иране — 14, Алжире — 12, Габоне — 6, Катаре — 3,2, Нигерии — 2,0, Канаде — 1,9, Народной Республике Конго — 1,5, Омане — 1,4, Ливии — 0,3, Тунисе — 0,3 и в Испании — 0,1. Общая территория концессий французских компаний по разработке нефтяных и газовых месторождений за пределами страны составила примерно 1,2 млн. км (из них 45 тыс. км — в странах Ближнего и Среднего Востока).  [c.157]

Анализ имеющейся адекватной информации о коррозии углеродистой стали в морской воде [73—76] позволяет составить более широкое представление о влиянии места проведения испытаний и о пределах изменения стационарных скоростей коррозии при продолжительных экспозициях. Зависимости коррозионных потерь от времени нмеют в основных чертах такой же вид, как и обсуждавшиеся выше. После высоких потерь в начальный период экспозиции скорость коррозии уменьшается и приближается к стационарному значению, которое, как можно предположить, определяется совместным влиянием обрастания и бактериальной активности. В табл. 162 представлены начальные и стацио -нарные значения скоростей коррозии стали в 7 различных местах. Стационарные скорости коррозии рассчитаны но наклону линейного участка зависимости коррозионных потерь от времени экспозиции. Хотя температуры, формы обрастания и сезонные циклы роста в местах проведения испытаний существенно отличаются (географическая широта изменяется от 9 до 51" северной широты), стационарные скорости коррозии углеродистой стали во всех случаях лежат в пределах узкого интервала 50—75 мкм/год.  [c.451]

По некоторым зарубежным данным [200], металлокерамика на медной основе состава Си — 68% 8п — 8% РЬ — 7% ЗЮз — 4% Ре — 6% и графит — 6%, прессуемая и спекаемая под давлением 18 кПсм при температуре 760° С, имеет предельную рабочую температуру нагрева в процессе работы 815° С. Присутствие масла и жиров на поверхности трения приводит к снижению коэффициента трения. Присутствие влаги, наоборот, увеличивает коэффициент трения. Механические свойства этой металлокерамики следуюш,ие модуль упругости 10 кГ/мм ] предел прочности на сжатие 17,5 кГ/мм и на растяжение 3,9 кПмм ] плотность 5,8 г/см относительное удлинение 0%.  [c.541]

Как видно из данных табл, 62, кумулятивные потребности в уране к концу 2000 г. составят величину, примерно равную разведанным резервам плюс потенциальным ресурсам в пределах затрат 66 долл, за 1 кг окиси урана. Это не означает, что потребности в уране могут быть покрыты без новых значительных открытий, поскольку на доступность запасов урана влияют такие факторы, как, например, зависимость основной части производства урана в ЮАР от уровня добычи золота. Кроме того, поскольку каждая АЭС имеет номинальный срок службы 30 лет после ввода в эксплуатацию, для мощностей, установленных в 2000 г., необходимы еще 6—9 млн. т, из которых 4—5 млн. т потребуются после 2000 г. Еще принять необходимость страхового резерва на десять лет, то при потребностях в 2000 г. стран—членов ОЭСР и Канады от 236 до 313 тыс. т урана в величину необходимых разведанных запасов следует включить дополнительно от 2,36 до 3,13 млн. т. Если учесть, что проектировать новые мощности по добыче урана следует за десять лет до их ввода из-за больших сроков подготовки месторождений, то поставленная ОЭСР задача обеспечения намеченного потребления урана представляется еще более сложной.  [c.288]

Среднеквадратичная погрешность в определении коэффициентов теплоотдачи находится в пределах от 3,9% (Я=16,7 бар и T i-Tsi=9 ) до 21,7% (Р = = 78,5 бар и T i—Tsi=2°). Среднеквадратичная погрешность в определении локального весового паросодержания (равновесного) составляла 2,84—4,41 /о в определении скорости на входе—1,43% при 750 кг/м -сек и 0,335% при 3300 кг/м -сек. Во время экспериментов производился постоянный контроль состава теплоносителя. Количество примесей HNO3—HjO в пересчете на HNO3 находилось в пределах 0,2—0,67%.  [c.127]

ПЛОТНОСТЬ дислокаций и других дефектов и их распределение в объеме. Так, предварительная деформация образцов меди заметно влияет на скорость радиационного повреждения и концентрацию точечных дефектов [381, а следовательно, и на величину предела текучести. Изменение предела текучести стали типа 304 после облучения нейтронами до дозы 6 10 н/см в отожженном состоянии достигает 400%, а после холодной деформации — лишь 70% [9]. В качестве примера на рис. 20 приведены типичные зависимости предела текучести облученных сталей 1Х18Н10Т и ОХ16Н15МЗБ от степени предварительной прокатки [40]. Видно, что величина изменений предела текучести существенно зависит от степени деформации, интегрального потока облучения и химического состава сталей. Упрочнение после облучения наблюдается для закаленного и деформированного состояний. При этом максимальный эффект радиационного упрочнения отмечается после деформации примерно до 20%. Сильно деформированная сталь после облучения имеет меньшие прочностные характеристики по сравнению с соответствующими свойствами стали до облучения. Увеличение интегрального потока облучения повышает прочностные свойства сталей. При этом изменение свойств в процессе облучения деформированных сталей при 450—500° С до 2,6 10- н/см в большей степени связано с термическим воздействием, чем с радиационным. Изменение свойств сталей после облучения потоком 1 10 н/см (1060) обусловлено для слабодеформиро-ванных сталей радиационным воздействием, для деформированных до 30% и выше — термическим воздействием под облучением (процессами возврата и рекристаллизации).  [c.77]

О Показано, что легирование бериллиевых 9 бронз типа Бр.БНТ1,9 магнием в количестве 0,1—0,4% обеспечивает после закалки и старения практически одинаково высокий уровень упрочнения (предел упругости), который значительно выше, чем в бронзе стандартного состава. Релаксационная стойкость бериллиевых бронз при 20° С также увеличивается при введении магния, но ее максимальное значение отвечает содержанию -—0,1% Mg.  [c.65]

Влияние формы и количества графита на предел прочности при растяжении чугуна состава 2,8 /0 в 3,37о с, 1,9% 81, 0,97о Мп. 0,02% Р. 0,027о 8 [100]  [c.19]


Смотреть страницы где упоминается термин 9 > пределы состава : [c.243]    [c.141]    [c.113]    [c.249]    [c.159]    [c.237]    [c.211]    [c.316]    [c.507]    [c.291]    [c.203]    [c.72]    [c.112]    [c.235]    [c.27]    [c.74]    [c.24]    [c.513]   
Диаграммы равновесия металлических систем (1956) -- [ c.31 ]



ПОИСК



1.114 — Предел прочности 1.114 Составы и режим химического никелирования 2.31 — Составы электролитов 1.114, 115 — черное — Назначение 1.113 — Составы электролитов

1.114 — Предел прочности 1.114 Составы и режим химического никелирования 2.31 — Составы электролитов 1.114, 115 — черное — Назначение 1.113 — Составы электролитов режимы работы

12%-ные сложнолегированные жаропрочные 131—138 —Азотируемый слой — Глубина и твердость Марки и назначение 135—137 — Механические свойства — Зависимость литейные 202—206 — Марки и назначение 202, 204 , 206 •—Механические свойства 203—205 — Пределы прочности длительной и усталости 204, 205 — Термическая обработка 203, 204 — Химический состав

121 — Предел текучести— Расчетные формулы относительное 133 — Химический состав

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав термообработки

2.254 — Пределы длительной состав

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав ударных нагрузках — Марки 63 — Механические свойства 65, 67 — Назначение 63—64 — Предел выносливости

600 °С — Виды поставляемого полуфабриката 281 — Длительная прочность 279 — Коэффициент линейного нормальной упругости 280 — Назначение 275 — Предел ползучести 279 Технологические свойства 281 — Химический состав 276 — Цены

9 > пределы состава в тройных системах

Отливки из марганцовистой стали Предел текучести состав

Отливки из марганцовистой стали Предел текучести формы — Химический состав

Порядок руководства движением поездов, локомотивов и составов в пределах станции

Предел хромокремнемарганцовая NE Steels - Химический состав

Состав Предел прочности при изгибе

Сплавы Предел пропорциональности - Влияние химического состава

Сплавы жаропрочные — Классификация на кобальто-никелевой основе 257 — Марки, пределы длительной прочности, состав



© 2025 Mash-xxl.info Реклама на сайте