Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

425 — Уравнения затухающие

При этом решения первого уравнения отражают статический изгиб сферического сегмента краевыми усилиями и момента.ми, решения второго уравнения затухают с удалением от края оболочки и характеризуют динамический краевой эффект, решения третьего уравнения совпадают с формами свободных колебаний всюду за исключением области, прилегающей к краю.  [c.446]

Если выписать полное решение этого линейного дифференциального уравнения второго порядка с правой частью, то получим закон движения массы М, в котором будут смешаны свободные колебания системы, зависящие от начальных условий и параметров системы, и вынужденные колебания, определяемые характером возбуждения и параметрами системы. Как показывает практика, свободные колебания в системе затухают довольно быстро и остаются лишь вынужденные колебания. Вибрационные машины основной технологический процесс выполняют в установившемся режиме, когда свободные колебания уже затухнут,  [c.302]


Добавление члена, содержащего временную производную от т, дает возможность представлять с помощью этого уравнения явление релаксации напряжения, характерного для жидкостей с памятью. Действительно, если при некоторой деформации устанавливается неизотропное напряженное состояние, а затем дальнейшее деформирование прекращается, напряжение будет затухать со временем согласно дифференциальному уравнению  [c.231]

Если исследовать в общем виде задачу о распространении волн в простых жидкостях с исчезающей памятью, то скорость распространения оказывается равной корню квадратному из отношения модуля упругости и плотности. Модуль упругости должен оцениваться локально величиной ц/Л он определяется только при распространении волны в покоящейся среде. Волны ускорения (т. е. разрывы ускорения, соответствующие разрывам скорости деформации) могут затухать в процессе их распространения, но могут также и возрастать по амплитуде, перерождаясь в ударные волны (разрывы скорости) за конечное время. Последняя ситуация возникает при условии, что начальная амплитуда волны достаточно велика, и при условии, что уравнение состояния в достаточной степени нелинейно. Интересно, что волна, распростра-  [c.296]

Первых два слагаемых правой части уравнения (20.19) характеризуют свободные колебания, которые обычно быстро затухают последнее слагаемое характеризует вынужденные установившиеся колебания системы, которые происходят с частотой внешней возмущающей силы.  [c.539]

Практически, благодаря неизбежному наличию тех или иных сопротивлений, собственные колебания будут довольно быстро затухать. Поэтому основное значение в рассматриваемом движении имеют вынужденные колебания, закон которых дается уравнением (86).  [c.242]

Первое слагаемое уравнения (20) определяет колебания стрелки с частотой свободных колебаний, которые быстро затухают благодаря наличию множителя  [c.112]

Первый член правой части уравнения (252) с возрастанием t стремится к нулю, и соответствующие ему собственные колебания системы с течением времени затухают, поэтому ими можно пренебречь, и остаются только вынужденные колебания системы  [c.281]

До сих пор мы пренебрегали влиянием трения на гармонический осциллятор. Влияние трения проявляется в том, что движение гармонического осциллятора затухает. Когда в уравнении движения учитывается трение, решение оказывается более близким к реальным условиям. Каким образом мы можем ввести трение Б уравнение движения для свободной частицы Трение выражается в действии на частицу тормозящей силы. Если на частицу действует только одна сила трения, то по второму закону Ньютона  [c.219]

Для всякой задачи о движении вязкой жидкости в заданных стационарных условиях должно, в принципе, существовать точное стационарное решение уравнений гидродинамики. Эти решения формально существуют при любых числах Рейнольдса. Но не всякое решение уравнений движения, даже если оно является точным, может реально осуществиться в природе. Осуществляющиеся в природе движения должны не только удовлетворять гидродинамическим уравнениям, но должны еще быть устойчивыми малые возмущения, раз возникнув, должны затухать со временем. Если же, напротив, неизбежно возникающие в потоке жидкости сколь угодно малые возмущения стремятся возрасти со временем, то движение неустойчиво и фактически существовать не может ).  [c.137]


Уравнения (57,2—4) с граничными условиями (57,5) определяют спектр собственных частот со. При 52 <С Якр их мнимые части 7 = Im(o < О и возмущения затухают. Значение йкр определяется моментом, когда (ио мере увеличения 5) впервые появляется собственное значение частоты с y > 0 при 5 = й,ср значение v проходит через нуль.  [c.312]

При М os ф > 1 + I/sin О (что возможно лишь при М > 2) величина X снова вещественна, но теперь надо выбрать ч < 0. Согласно (8) при этом -4 > 1, т. е. отражение происходит с усилением волны. Более того, знаменатели выражений (8) с х < О могут обратиться в нуль при определенных углах падения волны, и тогда коэффициент отражения обращается в бесконечность. Поскольку этот знаменатель совпадает (с точностью до обозначений) с левой стороной уравнения (3) предыдущей задачи, то можно сразу заключить, что резонансные углы падения определяются равенствами (5) я (6) (последнее — при М>2 ). В свою очередь, бесконечность коэффициента отражения (и прохождения), т. е. конечность амплитуды отраженной волны при стремящейся к нулю амплитуде падающей волны, означает возможность спонтанного излучения звука поверхностью разрыва раз созданное на ней возмущение (рябь) неограниченно долго продолжает излучать звуковые волны, не затухая и не усиливаясь при этом энергия, уносимая излучаемым звуком, черпается из всей движущейся среды.  [c.455]

Условия (90,12—13) отвечают наличию у уравнения (90,10) комплексных корней, удовлетворяющих требованиям (90,11). Но в определенных условиях это уравнение может иметь также и корни с вещественными со и kx, отвечающие уходящим от разрыва реальным незатухающим звуковым и энтропийным волнам, т. е. спонтанному излучению звука поверхностью разрыва. Мы будем говорить о такой ситуации как об особом виде неустойчивости ударной волны, хотя неустойчивости в буквальном смысле здесь нет, — раз созданное на поверхности разрыва возмущение (рябь) неограниченно долго продолжает излучать волны, не затухая и не усиливаясь при этом энергия, уносимая излучаемыми волнами, черпается из всей движущейся среды ).  [c.475]

Рассмотрим затухающие колебания точки в некоторой среде, которая тормозит движение, заставляя колебания затухать. Уравнение движения задается в виде  [c.171]

Пусть теперь энергия электрона соответствует одной из запрещенных зон неограниченного кристалла, т. е. k E) является комплексной величиной. Условие конечности волновой функции (7.115) в этом случае будет выполнено, если один нз коэффициентов А или Лг (в зависимости от знака мнимой части k) положить равным нулю. Тогда (7.117) и (7.118) превращаются в два линейных однородных уравнения с двумя неизвестными. Они имеют решение только при таком значении энергии, при котором определитель системы равен нулю. Все остальные значения Е запрещены. Таким образом, ограничение кристалла поверхностью приводит к тому, что в области энергии, соответствующей запрещенной зоне неограниченного кристалла, появляются разрешенные энергетические уровни. Эти состояния, локализованные вблизи поверхности, и получили название поверхностных уровней (состояний). Волновые функции, соответствующие поверхностным состояниям, экспоненциально затухают по мере удаления от поверхности. В области вакуума -ф-функция затухает монотонно, а в об-1G-221 24 f  [c.241]

Рассмотрим упругое полупространство. Начало координат поместим на его поверхности, ось Х направим вдоль границы, ось Х2 — в глубь среды (рис. 44). Предполагается, что объемные силы отсутствуют. Будем искать решение уравнений (10.6) и (10.7), которое не зависит от (плоская деформация), во времени меняется по синусоидальному закону, затухает с глубиной, а на границе Лз = 0 удовлетворяет условиям 72i = 22 = 0. Тогда при Хг = 0  [c.253]

Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]


Вынужденное движение в предположении, что колебания гироскопа, определяемые выражениями (Х.18) и (Х.19), затухают, соответствует частному решению уравнения  [c.265]

При исследовании движения одноосного гиростабилизатора на неподвижном и вращающемся основаниях в первом приближении пользуемся уравнениями прецессии гироскопа, считая, что условия устойчивости одноосного гироскопического стабилизатора как системы автоматического регулирования выполнены и нутационные колебания гироскопа с течением времени эффективно затухают.  [c.327]

При 5=1/2 и х>1 из (7.43) получаем, что решение разностного уравнения колеблется около точного с амплитудой, не большей ао—а при увеличении шага эти колебания затухают довольно медленно. Тем не менее разностная схема при 5=1/2 дает решения, близкие к точному в тех областях, где величина ао—а мала по сравнению с а. Такие области соответствуют малым значениям г и течениям, близким к равнове-  [c.205]

Интересно отметить, что при скоростях вращения вала, больших критических, амплитуда колебания вала существенно уменьшается, колебания затухают. Опыты показывают, что при (o>(ti центр тяжести диска располагается между линией, соединяющей опоры, и искривленной осью вала (рис. 553, б). В этом случае уравнение для определения прогиба будет иметь вид  [c.612]

Из уравнения (XV.41) следует, что в покоящейся среде магнитное поле со временем будет затухать, т. е. оно будет просачиваться сквозь вещество от точки к точке. Скорость просачивания, или скорость выравнивания магнитного поля, отнесенная к единице площади, определяется коэффициентом v . По аналогии с молекулярной диффузией он может быть назван коэффициентом диффузии магнитного поля или коэффициентом переноса магнитной субстанции. Из уравнения (XV.41) видно, что время затухания поля имеет следующий порядок t —  [c.409]

ДЛЯ удовлетворения граничным условиям необходимо к частному решению w = добавлять решение однородного уравнения, которое затухает на длине порядка X. Таким образом, общая картина поведения круговой цилиндрической оболочки под действием осесимметричной нагрузки рисуется следующим образом. На большей части длины оболочки в ней реализуется безмоментное напряженное состояние. Изгиб проявляется лишь вблизи концов и в местах резкого изменения нагрузки он носит характер краевого эффекта, т. е. область, где напряжения изгиба существенны, простирается лишь на некоторую определенную длину порядка Я.  [c.423]

Выше, при исследовании уравнений динамики сферического пузырька, не рассматривалось влияние внешних возмущений на его характеристики. Однако представляет интерес вопрос о том, будут ли расти или затухать возмущения, если полю скоростей дать некоторое бесконечно малое отклонение от сферической симметрии. Для решения этой задачи выразим сначала произвольное малое возмущение через сферические гармоники. Примем уравнение стенки пузырька в виде  [c.49]

Теория БКЗ представляет собой распространение вышеупомянутых концепций на упруговязкие жидкости. Постулируется также, что и для этих жидкостей существует энергетическая функция,, которая, разумеется, не обладает уже консервативными свойствами напротив, эта функция затухает с течением времени, отсчитываемого от момента наложения деформаций. Если принять в качестве отсчетной конфигурацию материала в текупщй момент и учитывать вклад деформаций за все времена в прошлом, то эта гипотеза приводит к следуюш,ему уравнению для напряжений  [c.223]

Проблема устойчивости течения жидкости хорошо известна в классической гидромеханике. В обш ем виде эту проблему можно сформулировать следующим образом. Пусть дана хорошо постаь-ленпая краевая задача. Может существовать (и даже быть получено в явном виде) точное решение уравнений движения, удовлетворяющее всем граничным условиям, которое является стационарным в эйлеровом смысле d dt = 0). Все же такое решение может быть неустойчивым в том смысле, что если в некоторый момент времени наложить на это решение малые возмущения, то эти возмущения самопроизвольно будут стремиться возрастать с течением времени, а не затухать. Это означает, что существует другое (возможно, нестационарное) решение уравнений движения и что практически наблюдаемый режим течения будет нестационарным, поскольку, конечно, в реальном случае невозможно избежать каких-либо возмущений. Типичным примером этого является турбулентное течение в трубе постоянного сечения, где имеется также стационарный, но неустойчивый режим течения, называемый ламинарным.  [c.297]

Исследование вынужденных колебаний при наличии сопротивления движению. Уравнение (20.6) показывает, что вынужденные колебания материальной точки при соиротивлении среды, пропорциональном скорости точки, являются гармоническими колебаниями, так как амплитуда их не изменяется с течением времени, т. е. вынужденные колебания под влиянием сопротивления не затукают. Они не затухают потому, что возмущающая сила все время поддерживает колебательное движение точки.  [c.57]

Но мы видели вьипе, что такое уравнение приводит к экспо-пенцнальному затуханию описываемой им величины. Мы можем, следовательно, утверждать, что завихренность затухает по направлению в глубь жидкости. Другими словами, вызываемое колебаниями тела движение жидкости является вихревым в некотором слое вокруг тела, а на больших расстояниях быстро переходит в потенциальное движение. Глубина проникновения вихревого движения  [c.124]

Таким образом, Vi удовлетворяет системе однородных линейных дифференциальных уравнений с коэффициентами, являющимися функциями только от координат, но не от времени. Общее решение таких уравнений может быть представлено в внле суммы частных решений, в которых vi зависит от времени посредством множителей типа Сами частоты со возмущении не произвольны, а определяются в результате решений уравнений (26,4) с соответствующими предельным условиями. Эти частоты, вообще говоря, комплексны. Если имеются такие со, мнимая часть которых положительна, то будет неограниченно возрастать со временем. Другими словами, такие возмущения, раз возникнув, будут возрастать, т. е. движение будет неустойчиво по отношению к ним. Для устойчивости движения необ.хо-димо, чтобы у всех возможных частот со мнимая часть была отрицательна. Тогда возникающие возмущения будут экспоненциально затухать со временем.  [c.138]

Для этого вычисляем производную dbikldt (напомним, что полностью однородное и изотропное турбулентное движение непременно затухает со временем). Выразив производные dvi,fdt и dvikjdt с помощью уравнения Навье — Стокса, получим  [c.198]

Если k — oV < О, то / (г) — периодическая функция, т. е. мы получили бы обычную плоскую волну, не исчезающую во всем объеме среды. Поэтому надо считать, что k — > О, и и — вещественное число. Уравнение имеет решения вида ехр ( кг) из них надо выбрать то, которое затухает при г-> — со.  [c.134]

Лондона имеет единственное решение, для многосвязных тел единственного решения не имеется, но возможно существование незатухающих токов Из уравнения (II) вытекает, что такие токя не изменяются со временем На основе диамагнитной концепции, по-видимому, можно получить ура в нение, аналогичное (I). Остается показать, что протекающие токи мета стабильны и не затухают во времени. Эта задача обсуждается в п. 14 Здесь же мы рассмотрим следствия из уравнений Лондона (I) и (II).  [c.700]


Основное ламинарное течение должно удовлетворять уравнениям Навье — Стокса. Будем предполагать, что результирующее движение также удовлетворяет уравнениям Навье — Стокса, а наложенные возмущения настолько малы, что можно пренебрегать квадратами возмущающих скоростей. В зависимости от того, затухает или нарастает с течением времени возмущающее движение, основное течение будет либо устойчивым, либо неустойчи-  [c.308]

В действительности явлени( удара гораздо более сложное, так как стенки трубы обладают упругостью (расширяются и сжимаются при изменениях давления в жидкости) жидкость также обладает упругостью, и, кроме Ого, в потоке возникают сопротивления движению жидкости, в результате чего колебания давления в трубе затухают. Расчеты этих колебаний довольно сложны, и мы их здесь не будем касаться, ограничиваясь определением повышения давления Ар в горизонтальной трубе у задвижки при мгновенном ее закрытии. С этой целью составим уравнение количества движения, отнеся его ко всей массе жидкости в трубе,  [c.262]

Одной из важных является задача о динамической устойчивости летательного аппарата. В заданном режиме полета аппарат об.шдает динамической устойчивостью, если отклонение кинематических параметров, вызванное. какими-либо воз.мущающими силами, в зависимости от времени уменьшается, поэтому возмущенное движение затухает и стремится к исходному программному полету. Если это условие не оеализуется, то наблюдается динамическая неустойчивость летательного аппарата. Исследование динамической устойчивости (или неустойчивости) осуществляется на основе уравнений вошущенного движения, в которые входят аэродинамические характеристики, зависящие от времени (так называемые нестационарные аэродинамические характерце пики).  [c.242]

Далее, задавая новые значения параметра с,- и повторяя расчеты, получим кривую = onst, которая окажется касательной к кривой F z) (рис. 7.2.2). В этой точке заданной фазовой скорости соответствует только одно волновое число и, следовательно, одно значение числа Рейнольдса Re- . На кривой нейтральной устойчивости точка (а , Re ) представляет собой точку касания нейтральной кривой с прямой, параллельной оси ординат а. Поэтому число Re является минимальным критическим числом Рейнольдса. При О уравнение (7.2.22) не будет иметь решений. На плоскости нейтральной кривой это означает, что при числах Рейнольдса, меньших критического (R g <1 R j , R 5kp) возмущения любой дли ны волны (или а) затухают, т. е. движение абсолютно устойчиво.  [c.456]

Схема (3.70) является абсолютно устойчивой (см, п. 3 3.2) Однако при больших значениях числа Куранта обычно развиваются сильные осцилляционные эффекты. Это явление легко объяснить, рассматривая соответствующую схему для модельного-уравнения (3.1). Для высоких частот —1, т, е. высокочастотные возмущения затухают медленно и с альтернирующим знаком В случае нелинейной системы в результате взаимодействия гармоник возможен рост высокочастотных возмущений.  [c.100]

Это решение не зависит от начальных условий, значит рассматриваются действительно установившиеся колебания, когда слагаемое в решении, соответс1вующее свободньш колебаниям, затухает практически до нуля. Для решения задачи о свободных колебаниях необходимо исследовать строго интегро-дифферен-циальное уравнение (17.8.8), что, в общем, затруднительно. Решение этого уравнения можно представить как линейную комбинацию двух функций, которые играют роль синуса и косинуса, но представляются довольно сложными двойными рядами. Насколько нам известно, никто не пытался построить таким образом фактическое решение, т. е. просуммировать и протабулировать эти ряды. Однако некоторое суждение о характере затухания свободных колебаний по истечении достаточно большого времени от их начала, т. е. тогда, когда затухание уже практически не зависит от того, каким образом были возбуждены колебания вначале, можно получить, используя ту же технику. Положим  [c.597]

Известно, что в реальных условиях температурные неоднородности, возмущения температурого поля затухают во времени, — таковы внутренние свойства рассматриваемого процесса и его математической модели, т. е. дифференциального уравнения теплопроводности Фурье. Чтобы и явная численная схема обладала этим свойством апериодического затухания, необходимо выполнение следующих условий Ро 1/4 т А /4а. Явная схема называется условно устойчивой.  [c.36]


Смотреть страницы где упоминается термин 425 — Уравнения затухающие : [c.446]    [c.297]    [c.310]    [c.76]    [c.23]    [c.24]    [c.45]    [c.133]    [c.206]    [c.274]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.350 ]



ПОИСК



Дифференциальное уравнение затухающих колебаний

Непосредственное исследование дифференциального уравнения (бб). — 4. Затухающий апериодический процесс

Основное кинетическое уравнение экспоненциально затухающее решение

Уравнение динамики затухающих колебаний

Фоккера — Планка уравнение экспоненциально затухающее



© 2025 Mash-xxl.info Реклама на сайте