Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кокс — Коэффициент теплопроводност

Электросопротивление 433, 434 Кокс — Коэффициент теплопроводности  [c.714]

Рис. 3-13. Зависимость коэффициента теплопроводности коксующегося материала и ее кусочно-постоянная аппроксимация. Рис. 3-13. Зависимость коэффициента теплопроводности коксующегося материала и ее кусочно-постоянная аппроксимация.

Материал поршневых колец должен обладать возможно меньшим коэффициентом трения, так как обычно потери на трение при работе поршней и поршневых колец составляют 50—60% всех механических потерь в двигателе. При плохих эксплуатационных условиях эти потери могут доходить до 70—80%. Поршневые кольца должны иметь высокий коэффициент теплопроводности, так как 75—80% тепла, полученного поршнем, отводится поршневыми кольцами. Кроме того, необходимо, чтобы кольца под влиянием высоких температур не теряли свою упругость. Наиболее эффективное уплотнение поршневыми кольцами достигается при минимальном зазоре между поршнем и втулкой цилиндра, правильной цилиндрической форме втулки и соответствующей чистоте ее зеркала. По мере износа втулки, поршней, поршневых колец, особенно маслосрезывающих, увеличивается расход масла за счет попадания его в камере сгорания, где оно частично сгорает, а частично коксуется, что приводит к пригоранию поршневых колец. Масло в камеру сгорания попадает вследствие насосного действия поршневых колец. Сущность насосного действия колец четырехтактного дизеля заключается в том, что при движении поршня вниз кольца прижимаются к верхней плоскости ручья, при этом масло, снимаемое кольцами со стенки втулки, заполняет зазоры между кольцом и ручьем. При движении поршня вверх кольца прижимаются к нижней плоскости ручья, при этом масло через зазоры попадает между поршнем и верхней плоскостью кольца. При движении поршня снова вниз кольца прижимаются к верхней плоскости ручья и масло будет выжато в зазор. Таким же образом масло будет подниматься от одного кольца к другому, пока не попадет в камеру сгорания.  [c.157]

Для повышения эрозионной стойкости пластмасс с различными видами армирующих наполнителей необходимо, чтобы преобладающая доля теплового потока, подводимого извне, тратилась на эндотермические реакции пиролиза, испарения и сублимации, а образующийся защитный слой газов и сам материал аккумулировали подводимое тепло. Для этого пластмассы должны обладать следующими свойствами низким коэффициентом теплопроводности, большой удельной теплоемкостью, способностью образовывать на поверхности при нагревании в значительном количестве газы, достаточной прочностью на срез, а также создавать на поверхности слои кокса при явлениях пиролиза.  [c.16]

В керамическом производстве широко применяют карбид кремния Si со сложной слоистой структурой. Карбид кремния технической чистоты изготовляют путем восстановления кремнезема (кварцевого песка) углеродом (коксом) в печах сопротивления. Промышленность выпускает два вида карбида кремния, различающихся химическим составом и свойствами, которые влияют на цвет, — зеленый и черный (табл. 48). Зеленому Si придает окраску избыток элементарного кремния, а черному — избыток углерода. Карбид кремния, иначе именуемый карборундом, поставляется промышленностью в" виде порошков различной зернистости (ГОСТ 3647— 80). Карборунд устойчив против воздействия всех кислот, за исключением фосфорной и смеси азотной и плавиковой. Изделия из карбида кремния отличаются высокой термической стойкостью, благодаря большой теплопроводности — сравнительно небольшим коэффициентом линейного расширения, а также достаточной прочностью и химической стойкостью. Изделия имеют следующие свойства.  [c.226]


Применение конструкционных материалов на основе графита связано с присущим для этих материалов комплексом ценных физико-химических и механических свойств, в частности, с жаропрочностью, высокой электро- и теплопроводностью, химической стойкостью, малым коэффициентом трения. Особенно широко эти материалы используются в металлургии, химической, электротехнической промышленности, ядерной технике. Наряду с природным графитом широко используются искусственные разновидности графита, получаемые в электропечах из нефтяного кокса и каменноугольного пека. Процесс изготовления графитовых изделий сложен, требует больших затрат электроэнергии и длителен во времени. Графитовые материалы имеют низкий модуль упругости, т. е. повышенную хрупкость, поэтому конструкции из графита обязательно должны быть защищены от ударных воздействий. Высокая пористость графита де-  [c.153]

Влияние температуры обработки (или, в конечном счете, совершенства кристаллической структуры) исследовано на полуфабрикате английского реакторного графита PGA и отформованном на коксе Кендалл материале [210, р. 155]. Оказалось, что между коэффициентом теплопроводности и диаметром кристаллитов существует зависимость, близкая к линейной. Связь кристаллической структуры с коэффициентом теплопроводности была также проанализирована на отечественных графитовых материалах промышленных и опытных. Последние были отформованы по технологии графита марки ГМЗ, а наполнителем в них служили различные коксы. Совершенство кристаллической структуры опытных материалов изменяли, варьируя температуру обработки.  [c.42]

Карбид кремния (карборунд) 81С получают в электрических печах сопротивления из кварцевого песка и кокса. Промышленность изготовляет два вида карборунда — зеленый и черный. Черный цвет обусловливается внедрением в его кристаллы углерода зеленый карборунд содержит меньшее количество примесей. В продажу карборунд поступает различной зернистости, которая регламентируется ГОСТ 3747—59. Твердость карборунда по щкале Мооса 9,2—9,5, удельный вес его 3,12—3,22, коэффициент теплопроводности от 6 до 10 ккал/м ч-град.  [c.39]

Каолиновые. легковесные огнеупоры изготовляются из 30% пористого или плотного шамота, 35% каолина владимирского и 35% термоантрацита (кокса) методом прессования и обжига. Объемный вес 1200— 1300 кг/л , коэффициент теплопроводности 0,6—0,8 ккал/м-ч - град при средней температуре 600—900° С, пористость 50—52%, огнеупорность 1750° С, предел прочности при сжатии 30—55 кг/см , дополнительная усадка при температуре 1400° С — 0,1—0,4%, коэффициент газопроницаемости — 5,2 л/м-ч-мм вод. ст. Указанные физико-термические свойства каолинового легковеса допускают его применение в рабочей футь-ровке промышленных печей до 1400° С при отсутствии жидких шлаков  [c.79]

Выпускаемый промышленностью графит — это разнообразные по структуре кристаллические частицы, скрепленные связующим. Технический графит получают прессованием и сильным нагревом твердых угле-родов типа нефтяного кокса, смешанного с каменноугольным пеком или какими-либо другими высокоуглеродными связующими (фенолформаль-дегидными смолами и др.). Графитизация проводится в электрических печах при температурах от 2800 до 3300 К. Исследования дифракции рентгеновских лучей показывают, что почти все происходящие на этой стадии изменения являются результатом повышения степени упорядоченности кристаллитов, присутствующих в обожженном состоянии, и что увеличения их размеров практически не происходит. В процессе графи-тизации обожженного и.зделия из нефтяного кокса удельное сопротивление материала уменьшается в 5 раз, теплопроводность повышается в 25 раз, коэффициент термического расширения уменьшается на 50%.  [c.168]

При определении целесообразности и выборе рациональной схемы использования фенольных сточных вод в оборотных циклах охлаждающих систем необходимо учитывать большое количество факторов термостабильные свойства воды скорость коррозии металла в оборотной воде наличие и величину биологических обрастаний в оборотном цикле наличие и концентрацию вредных веществ в атмосфере в районе градирни оборотного цикла изменение качества воды, направляемой для мокрого тушения кокса, а также скорость коррозии коксотушильного оборудования [161—163]. Эти вопросы изучал УХИН в лабораторных и промышленных условиях [13, 84, 164—166]. Для опытов использовали как неочищенные общезаводские стоки, так и воду после биологической очистки, причем сточные воды применяли как для самостоятельной подпитки оборотного цикла, так и в смеси со свежей технической водой в соотношении I 3, т. е. в соответствии с расходом этих вод на коксохимических заводах. Установлено, что при любых тепловых и гидравлических режимах работы оборотных циклов в системе полностью предотвращается накипе-образование (рис. 81). При использовании сточных вод поверхность трубок теплообменников покрывается пленкой, скорость образования которой в 15—20 раз меньше, чем карбонатных отложений (при оборотной технической воде), а коэффициент ее теплопроводности в 1,3—1,6 раза больше [164]. Вследствие этого значительно улучшается теплообмен, что было подтверждено результатами промышленных испытаний метода в оборотных циклах первичных газовых холодильников I блока цеха улавливания Ждановского коксохимического завода, где температура коксового газа снизилась на 4° С по сравнению со II блоком, работавшим на оборотной технической воде [166].  [c.151]


Углеродистые изделия (>85% С) могут быть угольными и графитиро-ванными, их изготовляют из различных видов кокса на углеродистых связующих с обжигом в восстановительной сфере. Они отличаются высокой теплопроводностью и электрической проводимостью, высокой термостойкостью, низким коэффициентом термического расширения, постоянством размеров при высоких температурах, хорошей устойчивостью против расплавов шлаков и металлов. Применяют углеродистые блоки в тех местах промышленных печей, где металл соприкасается складкой, а доступ кислорода ограничен, например, для кладки лещади и горна доменных печей, в шахтных печах для плавки свинца и др. Углеродистые электроды различной формы применяют в электродуговых печах. Углеродистые блоки используют для футеровки стен и пода электропечей для производства карбида кальция, ферросплавов, криолита и др.  [c.236]


Смотреть страницы где упоминается термин Кокс — Коэффициент теплопроводност : [c.306]    [c.302]    [c.192]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.184 ]



ПОИСК



Кокс (Сох)

Кокс Теплопроводность

Коэффициент теплопроводности

Мел — Коэффициент теплопроводност



© 2025 Mash-xxl.info Реклама на сайте