Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

151, 156, 192, 193 —Размеры сплава

Для магнитных систем с наименьшей массой и габаритными размерами. Сплавы с направленной кристаллизацией в виде столбчатых кристаллов, обладающие большой магнитной энергией  [c.654]

ГОСТ 14806—69 Швы сварных соединений. Дуговая сварка алюминия и алюминиевых сплавов регламентирует форму и размеры подготовки кромок и выполненных сварных швов при ручной и механизированной сварке в защитных газах конструкций из алюминия и его сплавов,  [c.12]

Наряду с формой разделки кромок и их размерами, регламентируемыми стандартами, в связи с широким применением толстолистового металла, а также высокопрочной стали возникла необходимость и в других, нестандартных их формах. Так, например, для толстолистового металла (стали, титановых сплавов) разработан метод сварки по узкому зазору (по так называемой щелевой разделке), при которой свариваемые кромки не имеют скоса, а зазор имеет величину 10 —12 мм при толщине до 100—150 мм (рис. 9, а).  [c.15]


Для гаек из тех же сталей установлено семь классов прочности, каждый из которых обозначается одним числом — 4 5 6 8 10 12 и 14. Для предохранения крепежных деталей от коррозии применяются соответствующие защитные покрытия. В ГОСТ 1759 — 70 предусмотрены 12 видов покрытий и их условные обозначения (от 01 до 12). ГОСТ 1759-70 устанавливает также, какие параметры должны быть указаны в условном обозначении крепежных деталей. Для болтов, винтов и шпилек из углеродистых сталей классов прочности 3.6... 6.9, гаек из углеродистых сталей классов прочности 4... 8 и изделий из цветных сплавов в условном обозначении указывают в следующем порядке наименование детали, вид исполнения, диаметр резьбы, шаг резьбы (только для метрической резьбы с мелким шагом), поле допуска резьбы по ГОСТ 16093-81 (СТ СЭВ 640 — 77), длину крепежной детали (для гаек этот пункт опускается), класс прочности или группу, вариант применения спокойной стали, обозначение вида покрытия, толщину покрытия, номер стандарта на размеры.  [c.201]

В первом случае распад начинается при температуре вблизи точки 1 (для сплава /). Кристаллы ip-фазы образуются преимущественно на границах зерен, так как работа образования центра кристаллизации на границе зерна меньше, чем внутри зерна. Критический размер зародыша должен быть относительно большим, так как переохлаждение мало. Дальнейшее охлаждение должно привести к выделению новых кристаллов и к росту выделившихся. Образующиеся кристаллы р-фа-зы не имеют определенной ориентации относительно исходной а-фазы, а внешняя форма их приближается к сфероиду, так как эта форма обладает минимумом свободной энергии. Кристаллы растут постепенно, атомы преодолевают энергетический барьер и на границе раздела а- и р-фаз один за другим встраиваются Б решетку выделяющейся фазы.  [c.142]

Если первый процесс, т. е. перераспределение алюминия и титана внутри решетки твердого раствора наблюдается в процессе закалочного охлаждения и в процессе отпуска при 500— 600°С, то при 600—850°С наблюдается появление у -фазы, размер частиц и состав которой зависят от температуры и продолжительности отпуска (старения). Так, при старении в течение нескольких часов при 700°С -фаза составляет около 20% объема сплава (и более), размер частиц у-фазы — по-  [c.474]

Высокая жаропрочность сплавов нимоник обеспечивается их высокой прочностью и малой скоростью разупрочнения. В данном случае у состаренного нимоника высокая прочность связана с образованием большого количества (до 20%, а в некоторых современных высокожаропрочных сплавах до 40% второй фазы), когерентно связанной с маточным твердым раствором. Эта когерентная связь в свою очередь вызвала дробление блоков 7-твердого раствора до размера в 1500—2000 А. Малая же скорость разупрочнения связана с малой диффузионной подвижностью атомов алюминия и титана при высоких температурах вследствие высоких значений сил межатомных связей в решетках у- и у -фаз.  [c.476]

В целях резкого повышения износостойкости, а также восстановления размеров изношенных деталей проводят наплавку на те поверхности детали, которые подвергают сплошному износу. В этом случае наплавляются заранее заготовленные в виде прутков (трубок) наплавочные сплавы, расплавляются кислородно-ацетиленовым пламенем или вольтовой дугой и в жидком (полужидком) состоянии наносят на поверхность детали.  [c.507]


При каждой температуре старения образуются зоны раз-H0I-0 размера, поэтому образовавшиеся при комнатной температуре зоны Г. П. малого размера оказываются при более высокой температуре (например, при 200°С) неустойчивыми и рассасываются ( растворяются ), так как при этой температуре устойчивыми являются образования большего размера. Следовательно, если нагреть естественно состаренный сплав до 150—200°С, то ранее образовавшиеся участки небольшого размера растворятся , и сплав возвратится в исходное свежезакаленное состояние. Этим объясняется явление возврата.  [c.574]

Индукционные печи имеют преимущества перед дуговыми в них отсутствует электрическая дуга, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов при плавке в металле возникают электродинамические силы, которые перемешивают металл в печи и способствуют выравниванию химического состава, всплыванию неметаллических включений небольшие размеры печей позволяют помещать их в камеры, где можно создавать любую атмосферу или вакуум. Однако эти печи имеют малую стойкость футеровки, и температура шлака в них недостаточна для протекания металлургических процессов между металлом и шлаком. Эти преимущества и недостатки печей обусловливают возможности плавки в них в индукционных печах выплавляют сталь и сплавы из легированных отходов методом переплава или из чистого шихтового железа и скрапа с добавкой ферросплавов методом сплавления.  [c.40]

Возможность получения тонкостенных, сложных по форме или больших по размерам отливок без дефектов предопределяется литейными свойствами сплавов. Наиболее важные литейные свойства сплавов жидкотекучесть, усадка (линейная и объемная), склонность к образованию трещин, склонность к поглощению газов и образованию газовых раковин и пористости в отливках и др.  [c.122]

Конструкция литой детали должна обеспечивать высокий уровень механических и служебных характеристик при заданной массе, конфигурации, точности размеров и шероховатости поверхности. При разработке конструкции литой детали конструктор должен учитывать как литейные свойства сплавов, так и технологию изготовления модельного комплекта, литейной формы и стержней, очистку и обрубку отливок и их дальнейшую обработку. Кроме того, необходимо стремиться к уменьшению массы отливок и упрощению конфигурации.  [c.174]

Вид сварки выбирают, исходя из размера и формы соединяемых заготовок расположения швов в сварном соединении физико-химических свойств, соединяемых материалов возможности механизации и автоматизации процесса сварки. Так, например, для сварки листовых конструкций из всех марок сталей и некоторых цветных сплавов широко применяют дуговую и электрошлаковую сварку. Для получения стыковых соединений заготовок компактных, полых и развитых сечений из сталей и цветных металлов применяют контактную стыковую сварку. В производстве тонколистовых конструкций из сталей и цветных металлов для нахлесточных соединений  [c.249]

Наиболее широко используют алмазные резцы для тонкого точения и растачивания деталей из сплавов алюминия, бронз, латуней и неметаллических материалов. Алмазный инструмент применяют для обработки твердых материалов, германия, кремния, полупроводниковых материалов, керамики, жаропрочных сталей и сплавов. При использовании алмазных инструментов повышается качество обработанных поверхностей деталей. Обработку ведут со скоростями резания более 100 м/мин. Поверхности деталей, обработанные в этих условиях, имеют низкую шероховатость и высокую точность размеров.  [c.280]

Шарики, как инструмент, не обеспечивают оптимальных условий деформирования и имеют малую стойкость. Калибрующие оправки выполняют одноэлементными, многоэлементными или сборными, Каждый из элементов — поясков имеет свой размер. Деформирующие элементы изготовляют из твердого сплава или стали, закаленных до высокой твердости.  [c.388]

Электроимпульсную обработку целесообразно применять при предварительной обработке штампов, турбинных лопаток, фасонных отверстий в деталях из жаропрочных сплавов. Точность размеров и шероховатость обработанных поверхностей зависят от режима обработки. При электроимпульсной обработке съем металла в единицу времени в 8—10 раз больше, чем при электроискровой обработке.  [c.404]

Опытные данные о коррозии ряда металлов и сплавов, в том числе и на железной основе, указывают на то, что величина зерна мало влияет на скорость коррозии. Исключение составляют случаи, когда на границе зерен металла условия таковы, что коррозия может приобрести межкристаллитный характер. Увеличение размеров зерна в этих случаях приводит к увеличению скорости межкристаллитной коррозии общая протяженность границ у крупнозернистого металла меньше, чем у мелкозернистого,  [c.332]

Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали.  [c.341]


Как показали эксперименты, для стабилизации размеров сплава ВТЗ-1 требуется самая сложная термическая обработка выдержка в течение 10 ч при 50° С, обработка холодом 1 ч при —70° С, затем выдержка 3 ч при температуре 180° С и вторая обработка холодом 1 ч при —70° С. Следует обращать внимание на время вылеживания сплавов после упрочняющей термической обработки. В сплаве ОТ4, например, расслоение довольно интенсивно идет при комнатной температуре. Участки робог- И Робеэн-раствора после обработки холодом претерпевают дальнейшее превращение при нагреве до 50—100° С, если в процессе предварительного расслоения зоны, обогащенные и обедненные легирующими элементами, выросли до больших размеров.  [c.75]

ZnA14A ЦА4о ЦА4 Хорошая жидкотекучесть, повышенная коррозионная стойкость, стабильность размеров сплав ЦА4 обладает меньшей коррозионной стойкостью В автомобильной, тракторной, электротехнической и других отраслях промышленности для отливки деталей приборов, Т1>ебующих стабильности размеров  [c.717]

ГОСТ 16038—70 Швы сварных соединений трубопроводов из меди и медно-никелевого сплава регламептируе формуй размеры подготовки кромок и выполненных сварных швов при механизированной сварке в защитных газах труб из меди и се сплавов.  [c.12]

Для никелевого сплава такая диаграмма приведена на рис. 77,а, из которого р.идио, что размер зерна уменьшается по мере увеличения стсиени деформации и понижения температуры при рекристаллнзациопиом отжиге. Рост зер-  [c.95]

Характерные особенности имеются у твердых растворов на базе фаз внедрения, Оказывается, что растворы с избытком металлоида в равновесном со- стоянии никогда не встречались, но с избытком металлических атомов встречаются очень часто. Практически в металлических сплавах фазы внедрення почти никогда не имеют стехиометрического соотношения атомов и всегда в НИХ Б избытке присутствуют атомы металла. В этих случаях мы имеем не замену металлоида атомами металла (что, учитывая атомные размеры, надо признать невозможным), а недостаток металлоидных атомов, т. е. образование на базе фаз внедрения твердых растворов вычнтпппя, с которыми мы ознакомились выше.  [c.108]

Приводимые зависимости свойств сплавов от вида диаграммы состояния— лишь приближенная схема, не всегда подтверисдающаяся опытом, так как в ней не учитываются форма и размер кристаллов, их взаимное расположение, температура и другие факторы, сильно влияющие на свойства сплава. Особенно сильно влияние этих факторов сказывается на свойствах силавов-смесей аддитивный закон нарушается и свойства сплава могут быть выше или ниже прямой линии, соединяющей свойства чистых компонентов. Так, при дисперсной двухфазной структуре твердость сплава лежит выше аддитивной прямой. Если сплав-смесь состоит из двух фаз —одной твердой, другой очень мягкой —и последняя залегает ио границам зерна, то твердость сплавов, богатых по концентрации твердой составляющей, ниже аддитивной прямой. Если два компонента, образующих смесь, сильно отличаются по температурам плавления или эвтектика является очень легкоплавкой, то аддитивная зависимость сохраняется лишь в результате измерения твердости при сходственных температурах (например, 0,4 Tain).  [c.157]

Сплав с 36% Ni называется инваром (неизменный), и его можно считать практически нерасширяюшимся. Этот сплав применяют во многих приборах для деталей, размеры которых не должны изменяться с изменением температуры. Следует иметь в виду, что малый коэффициент линейного расширения инвара сохраняется лишь в интервале от —80 до -f-100° выше и ни-х<е этого интервала коэффициент расширения инвара резко  [c.538]

Исходной заготовкой при прокатке служат слитки стальные массой до 60 т, из цветных металлов и их сплавов обычно массой до 10 т. При производстве сортовых профилей стальной слиток массой до 15 т в горячем состоянии прокатывают на блюминге, получая заготовки квадратного (или близкого к нему) сечения (от 140x 140 до 450X450 мм), называемые блюмами. Затем блюмы поступают па заготовочные станы для прокатки заготовок требуемых размеров или сразу на крупносортные станы для прокатки крупных профилей сортовой стали. На заготовочных и сортовых станах за-готовка последовательно проходит через ряд калибров.  [c.66]

Наличие большого разнообразия форм и размеров штампо-ванных поковок, а также сплавов, из которых их штампуют, обусловливает суш,естБование различных способов штамповки.  [c.80]

При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

Инструменты сложных форм (сверла, зенкеры, развертки, элементы протяжек), а также небольших размеров изготовляют из пластифицированных твердых сплавов. Пластифицированный твердый сплав представляет собой спрессованный порошок, погруженный в кипящий парафин при температуре 400 °С и после ос тываиия составляющий с ним однородную массу. Пластифииироваиные брикет bf легко обрабатывать на металлорежущих станках, прессовать, выдавливать через фасонные фильеры.  [c.278]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]


Выформовать на пластине площадку размером 30 X х50 мм, нанести на нее слой буры толщиной 0,2—0,3 мм и порошкообразного сплава 3—5 мм (рис. 40).  [c.93]

В настоящее время доводку точных сквозных и глухих отверстий в деталях из цементированной, закаленной и азотированной сталей, алюминиевых сплавов и бронзы осуществляют доводниками с брусками из синтетических алмазов. Этот новый метод сочетает преимущества обычной притирки и хонингования и обеспечивает высокую точность размера (1-й класс и точнее) и геометрической формы (овальность и конусность 1—2 мкм), 10—12-й класс шероховатости.  [c.229]

После реконструкции, проведенной с целью устранения недостатков, выявившихся при эксплуатации, завод-автомат выполняет автоматически в определенной последовательности следующие стадии производственного процесса на позициях / — загрузка чушек алюминиевого сплава 2—плавление, рафинирование и очистка сплава от шлака 3 — кокильная отливка 4 — отрезка литников и возврат их в плавильную печь для переплавки 5 — загрузка контейнеров поршнями 6—термическая обработка 7 — автоматический бункер 8 — возврат контейнеров 9 — обработка базовых поверхностей (одновременно у двух деталей) 10 — черновое растачивание и зацентровка (одновременно четырех деталей) 11 — черновое обтачивание (одновременно четырех деталей) 12 — фрезерование горизонтальной прорези (одновременно у четырех деталей) 13 — сверление десяти смазочных отверстий в каждой детали (одновременно у четырех деталей) 14 — чистовое обтачивание (одновременно четырех деталей 15 — разрезание юбки и срезание центровой бобышки (одновременно у четырех деталей) 16 — подгонка веса поршней (одновременно у двух деталей) путем удаления лишнего мет 1лла на внутренней стороне юбки 17 — окончательное шлифование на автоматическом бесцентрово-шлифовальном станке (одновременно четырех деталей) 18 — мойка 19 — автоматический бункер 20 — обработка отверстий под поршневой палец (тонкое растачивание отверстий растачивание канавок под стопорные кольца развертывание отверстий) 21 —мойка 22 — контроль диаметров и конусности юбки и сортировка на размерные группы 23 — контроль формы и размеров отверстий под палец и сортировка на размерные группы 24 — покрытие поршней антикоррозийной смазкой (консервация) 25 — завертывание в водонепроницаемую бумагу (пергамент) 26 — набор комплекта поршней, формирование картонной коробки, заклейка ее и выдача.  [c.467]

А. Н. Фрумкиным и В. Г. Левичем было теоретически доказано, что поверхность корродирующего металла остается приблизительно эквипотенциальной и при наличии неоднородностей, если только размеры включений малы, а электропроводность электролита достаточно велика, что подтверждено измерениями Г. В. Акимова и А. И. Голубева (рис. 129). Как видно из рис. 129, наблюдаются заметные изменения потенциала при переходе от одной составляющей сплава (анод—цинк, катод — FeZn,) к другой, но абсолютная величина их невелика. В тех случаях, когда нас интересует только общая величина коррозии, а не распределение ее по поверхности (например, при определении величины само-  [c.185]

На склонность к коррозионному растрескиванию металлов и сплавов оказывает также влияние размер зерна. При сравнении склонности к коррозионному растрескиванию сплава АМг5 было установлено, что к указанному виду разрушения более склонны сплавы с большим размером зерна.  [c.106]

Размер ионов легирующего компонента должен быть меньше размера ионов основного металла а) меньший, чем у иона основного металла, радиус иона ле ирующего компонента позволяет предполагать у легирующего компонента больший коэффициент диффузии в сплаве б) меньший радиус иона легирующего компонента ведет к образованию окисла с меньшими параметрами решетки, который будет сильнее затруднять окисление оспоБного металла.  [c.146]

Более эффективным способом оксидирования магния и сто СП,завов является электрохимический. Этот способ, в отличие от химического способа, ие приводит к изменению размеров деталей и придает магнию и его сплавам более высокую износостойкость (ири толщине пленки около 6 мкм). Электрохимическое оксидирование магниевых сплавов производят постоянным током на аноде. Для этой цели применяют кислые растворы на основе хромового ангидрида или смеси бихромата калия с однозамещен-ным фосфатом натрия. Чаще всего применяют для оксидирова-  [c.330]

Термопары вольфрам-рений успешно используются в инертном газе высокой чистоты, в водороде, а также в вакууме с ограничениями, указанными выше. Для стабилизации размеров зерна рекомендуется предвари тельный отжиг новой термопарной проволоки. Это делается в инертной атмосфере при температуре 2100 °С в течение от одного часа для и — 3 % Не до нескольких минут для У — 25% Не. Такая процедура отжига снижает также скорость образования интерметаллической о-фазы в сплаве Ш — 25% Не, которая в противном случае выпадает в части проволоки, находящейся длительное время при температурах от 800 до 1300 °С. Градуировочная таблица зависимости термо-э.д.с. от температуры была предложена [2], но пока формально не утверждена. Одно из важных применений термопар водвф-рам-рений будет рассмотрено ниже и состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.  [c.292]


Смотреть страницы где упоминается термин 151, 156, 192, 193 —Размеры сплава : [c.27]    [c.59]    [c.40]    [c.98]    [c.629]    [c.150]    [c.322]    [c.281]    [c.370]    [c.328]    [c.179]    [c.191]    [c.128]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.151 , c.153 , c.155 , c.156 ]



ПОИСК



17 — Размеры — Отклонения допускаемые цветных сплавов

17 — Размеры — Отклонения допускаемые цветных сплавов полые — Получение вакуумным всасыванием — Схемы

271, 278 — Размеры отверстий и резьб 270 — Толщина сплавов — Припуски

650 — Подачи 677 Размеры подточки перемычки сплава двузубые и трехзубые

Допускаемые отклонения на размеры чугунных и стальных отливок сплавов

Допуски на размеры литых деталей из цветных сплавов

Заклепки из цветных металлов сплавов — Размеры

Коэффициент асимметрии никла влияния абсолютных размеров сечения для легких сплавов

Коэффициент асимметрии цикла влияния абсолютных размеров сечения для легких сплавов

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые допускаемые отклонения

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые отклонения

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые свойствами микронные 238 — Магнитные и электрические свойства

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые свойствами — Магнитные и электрические свойства 250—259 — Потери

Ленты из сплавов железохромоалюминиевых — Размеры и допускаемые удельные 263 —. Проницаемость консервативная 265—268 — Размеры

Ленты из сплавов кобальтохромоникелевых — Размеры

Листы из сплавов со специальными магнитными свойствами — Магнитные и электрические свойства 250252, 254—258 — Размеры и допускаемые отклонения

Литейные сплавы свойства сплавов и их влияние на конструктивные размеры и форму отливок

Отклонения из цветных сплавов — Допуски на размеры

Отливки алюминиевых сплавов медных сплавов — Вес — Отклонения допускаемые 14 — Размеры Отклонения допускаемые

Отливки из высокопрочного чугун из цветных сплавов кокильные Размеры — Допуски

Отливки из цветных металлов и сплавов Допустимые отклонения размеров

Отливки из цветных сплавов Допуски на размеры

Отливки из цветных сплавов Допуски на размеры ят Качество поверхности

Отливки из черных сплавов — Допустимые отклонения размеров

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность в зависимости от термической обработки и от размера зазора 235, 236 — Припои

Прессформы — Выбор типа 596 — Заливка восковым сплавом 71, 72 Элементы формующие—Размеры — Расчетные формулы

Проволока из сплавов железохромоалюминиевых из сплавов кобальтохромоникелевых — Размеры

Проволока из сплавов железохромоалюминиевых нихромовая микронных размеров — Расчетные данные

Прутки из сплавов железохромоалюминиевых из сплавов кобальтохромоникелевых — Размеры

Прутки из сплавов титановых 183 Механические свойства при различных температурах температурах 209 — Размеры и отклонения допускаемые 209, 201 Химический состав

Развертки машинные цилиндрические комбинированные сплава 173, 174, 195 Размеры

Развертки машинные цилиндрические комбинированные твердого сплава 173 Размеры

Размеры Контроль из легких сплавов

Сверла для кольцевого монолитные из твердого сплава Размеры и допуски

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры жидкости

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры и область применения

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры наружным подводом охлаждающей

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры охлаждения

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры размеры и типы

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры соответственно

Сверла для кольцевого сверления тонкостенных деталей из легких сплавов Размеры сплавов — Геометрические параметры 204 — Размеры режущих элемен-тов и формы заточки 203—204 Размеры основные и тины

Сплавы Полуфабрикаты — Размеры и допускаемые отклонения

Сплавы алюминиевомедномагниевые Коэфициент лёгкие — Коэфициент влияния абсолютных размеров 363 — Коэфициент концентрации напряжений

Сплавы алюминиевые дефоомируемые алюминиевые листовые — Размеры

Сплавы легкие — Коэффициент влияния абсолютных размеров сечения

Сплавы магнитострикционные изготовления 108 — Размеры магнитов 109 — Характеристика размагничивания

Сплавы титана 121 — Размеры и применение листов

Твердость металлов и сплавов Размеры и форма поверхности детали

Трубы из алюминия и алюминиевых сплавов катаные и тянутые — Механические свойства 383, 384 - Обозначение 383 - Размеры

Трубы из сплавов кобальтохромоникелевых — Размеры

Трубы из сплавов магниевых латунные прессованные — Размеры

Трубы из сплавов магниевых латунные — Механические свойства и применение 207 — Размеры

Условия получения различной точности размеров деталей из цветных сплавов

Условия получения различной точности размеров деталей из черных сплавов

Фрезы Размеры пластинок твердого сплав



© 2025 Mash-xxl.info Реклама на сайте