Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двухжидкостная модель Тиссы

Фононы и ротоны. Даты двух работ Капицы заставляют предположить, что теория Ландау была сформулирована в начале 1941 г. В вводном разделе своей работы Ландау критикует двухжидкостную модель Тисса  [c.806]

Как отмечал Ландау, явления, которых следует ожидать на основании его модели, совпадают с предсказанными двухжидкостной моделью Тисса. Подобно Тисса, он разделил полную плотность жидкости р на две зависящие от температуры части р и р , которые соответствуют нормальному и сверхтекучему состояниям, так что всегда р +Рз = Р- Однако он специально под-  [c.806]


При подстановке известного из измерений значения скорости звука выражение (23.1) переходит в зависимость 0,021 джоуль1 г- град). Возникновение дополнительных возбуждений выше 0,7°К соответствует в теории Ландау появлению ротонов, а в двухжидкостной модели Тисса—испарению конденсата Бозе—Эйнштейна в пространстве скоростей. Вид ожидаемой зависимости теплоемкости от температуры в этих двух теориях оказывается одинаковым, однако, как уже указывалось в разделе 1, роль вклада обеих компонент в теплоемкость оказывается совершенно различной с точки зрения проблемы сверхтекучести. В теории Ландау сверхтекучая компонента не обладает не только ротонной, но и фононпой энтропией, тогда как, по Тисса, эта компонента должна сохранять свою фононную энтропию. На основании одних только измерений теплоемкости нельзя, таким образом, решить вопрос, имеет ли сверхтекучая компонента фононную энтропию или пет для этого необходимо определить энтропию нормальной компоненты. Такие данные можно получить при достаточно низких температурах, измеряя тепло-перенос и термомеханический эффект в гелии.  [c.824]

ДВУХЖИДКОСТНАЯ МОДЕЛЬ ТИССЫ  [c.420]

Двухжидкостная модель Тиссы  [c.421]

Двухжпдкостная модель. Непосредственный результат работы Лондона оказался довольно неожиданным даже для самого автора она привела к созданию феноменологического описания гелия, которое, несмотря на свой сомнительный физический смысл, оказалось исключительно полезным в качестве рабочей гипотезы. Тисса был хорошо знаком с первоначальной работой Лондона-, он сформулировал свое макроскопическое описание гелия как копденсированного газа Бозе—Эйнштейна, ставшее известным под названием двухжидкостной модели [38]. По его предположению, при охлаждении жидкого гелия нинче температуры Х-перехода начинается конденсация атомов в состояние с нулевым импульсом. Никакого выделения новой фазы не происходит, поскольку процесс конденсации затрагивает только скорости атомов и никак не связан с положением в пространстве атомов, находящихся в наинизшем состоянии. Не И рассматривается как смесь двух полностью взаимоироникающих жидкостей, которые обладают различными теплосодержаниями, но состоят из одних и тех же частиц— атомов гелия.  [c.801]

Несомненный успех двухжидкостной модели в форме, предложенной Тисса, вызвал тенденцию приписывать ей часто больший физический смысл, чем тот, которого вообще можно было от нее требовать. Не говоря уже о том, что в атомных масштабах разделение атомов I от атомов II недопустимо с точки зрения квантовой механики, в этой модели должны возникать и другие трудности. Представление о том, что при абсолютном нуле гелий должен состоять целиком из атомов с нулевым импульсом, оставляет необъясненной одну из замечательных особенностей этого вещества, а именно его большую нулевую энергию. По этой же причине объяснение термомеханического эффекта на основании этой модели является до некоторой степени иллюзорным. Выравнивание разности концентраций в этом случае рассматривается как аналогия осмотической диффузии через полупроницаемый капилляр. Очевидно, однако, что подобный диффузионный процесс не может иметь места в смеси, одна из компонент которой—нормальная жидкость—неподвижна благодаря трению, а другая—сверхтекучая жидкость—имеет нулевой импульс. Эти трудности можно обойти, если приписать сверхтекучей компоненте некоторый импульс, но тогда и без того неясная связь свойства сверхтекучести с конденсацией Бозе—Эйнштейна станет еще более туманной.  [c.803]


Вторая работа Капицы [42], опубликованная на семь месяцев позже, касалась течения Не II через узкую щель под влиянием разности температур (фиг. 22). Она была количественным исследованием механокалориче-ского эффекта в адиабатических условиях. Измерялось количество переносимого тепла Q и разность термомеханических давлений А/, соответствующая разности температур А Т (фиг. 23). Эта работа, явившаяся, таким образом, проверкой уравнений Г. Лондона, показала, что со значительной точностью разность энтропий равна полной энтропии жидкого Не II. Из своих экспериментов Капица заключил, что энтропия жидкого гелия, протекающего через узкую щель, равна нулю, причем он отметил, что это предположение было высказано Тисса и Г. Лондоном. Вместе с тем он считал, что правильное объяснение этим явлениям дает новая теория жидкого гелия, развитая Ландау [43] и опубликованная одновременно с его работой. Принимая во внимание новую двухжидкостную модель Ландау, Капица изменил свои предположения о механизме поверхностного течения.  [c.806]

Определения (18.79) — (18.82) соответствуют величинам, введенным Тиссой в его феноменологической двухжидкостной модели. Здесь мы получили их на основе молекулярной теории Ландау и Фейнмана. Необходимо помнить, однако, следующие обстоятельства  [c.445]

Тиссы двухжидкостная модель 418 Третий закон термодинамики 36  [c.515]


Смотреть страницы где упоминается термин Двухжидкостная модель Тиссы : [c.807]    [c.381]    [c.243]    [c.837]    [c.347]   
Смотреть главы в:

Статистическая механика  -> Двухжидкостная модель Тиссы



ПОИСК



Гелий II, нормальная компонент двухжидкостная модель Тисс

Двухжидкостная модель

Тиссена модель

Тиссо



© 2025 Mash-xxl.info Реклама на сайте