Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

3. 91, 92, 94, 95-Формы армированные — Материал

В этом параграфе рассмотрена оптимальная форма армированной колонны, возводимой из неоднородно-стареющего вязкоупругого материала с постоянной скоростью.  [c.154]

Б этом параграфе рассмотрена задача оптимизации формы армированной колонны, наращиваемой со случайной скоростью. Материал колонны обладает свойствами ползучести и неоднородного старения. В общем случае установлены формулы, дающие решение задачи в параметрическом виде. Для ряда характерных ситуаций численно получена оптимальная форма колонны. Установлено, что оптимальная форма существенно зависит от скорости возведения. Проанализирована связь оптимальных форм при детерминированной и случайной скорости возведения [251].  [c.164]


Принятая в технике традиционная схема сырье—материал— полуфабрикат—изделие далеко не оптимальна в случае использования композиционных материалов. Операции изготовления полуфабриката и даже особенно материала по возможности следует исключать. Оптимальной следует признать ту технологию, которая позволяет максимально приблизить форму получаемого материала или полуфабриката к форме готовой детали или, лучше, к цельным узлам конструкций, сводя к минимуму операции соединения и обработку. При изготовлении деталей сложной формы, а также узлов конструкций, применяемый автоматизированный процесс должен обеспечить оптимальную схему армирования, рассчитанную в соответствии с действующими на деталь напряжениями.  [c.11]

Существенное отличие поведения армированного материала при уплотнении в жесткой пресс-форме состоит в том, что наличие  [c.155]

Приведенные выше критерии прочности армированного слоя основаны на структурной модели слоя, которая позволяет аналитически учесть микроструктурные параметры композита. В расчетной практике широкое распространение получили также феноменологические критерии прочности, основанные на условно однородной модели слоя. Пределы прочности такого слоя при простых видах нагружения (растяжении, сжатии, сдвиге) определяются экспериментально, а критерий прочности позволяет предсказать предельное сочетание этих напряжений при сложном нагружении слоя. Феноменологические критерии прочности иногда применяют для оценки прочности слоистого материа.ла, ес.ли известны пределы прочности материала при простых видах нагружения. Преимуществом феноменологического критерия по сравнению со структурным является его высокая точность, обусловленная тем, что феноменологический критерий по существу является аппроксимацией экспериментальных данных. Для структурных критериев требуется меньшее число экспериментальных результатов, и в отличие от феноменологических критериев они позволяют выявить механизм и форму разрушения материала. Феноменологические критерии прочности композитов подробно описаны в литературе [7, 8, 18, 25].  [c.304]

Армированные материалы можно получать нанесением на подложку различной конфигурации чередующихся слоев матрицы и арматуры. После нанесения покрытия подложку удаляют (выжигают, растворяют, выплавляют, удаляют механически и т. п.). В результате получается изделие из армированного материала, повторяющее геометрическую форму подложки. Иногда требуется высокий уровень свойств только от поверхностных слоев детали. В этом случае создают армированное покрытие с заданными свойствами на готовом изделии.  [c.466]

Кро.мки деталей, подготавливаемых для армирования и заливки резиной, пластмассами и легким сплавом, долл ны быть притуплены и очищены от заусенцев, ржавчины и т. п. Для более прочной связи с массой основной отливки из легкого сплава на армируемых деталях делаются насечки или небольшие отверстия, в которые при заливке формы затекает материал, подвергаемый армированию.  [c.307]

Влияние концентрации напряжений при растяжении ортогонально армированного материала 33-18С исследовалось на плоских образцах длиной 125 мм различного попеременного сечения при постоянной скорости перемещения нижнего захвата, равной 40 мм/мин. Надрезы на образцах в профиле имели форму гипербол, что позволяло в более широких пределах варьировать величину градиента напряжений.  [c.71]


Армированные материалы можно получать нанесением на подложку различной конфигурации чередующихся слоев матрицы и арматуры. После нанесения покрытия подложку удаляют (выжигают, растворяют, выплавляют, удаляют механически и т. п.). В результате получается изделие из армированного материала, повторяющее геометрическую форму подложки.  [c.444]

Армированное изделие неоднородно по материалу, изготовлено с применением неразъемного соединения методом опрессовки (рис. 221) или другими способами, обеспечивающими монолитную связь (заформовкой в металл и др.). Каждое армированное изделие состоит из арматуры и оформившегося в пресс-форме материала — заполнителя.  [c.259]

Пример. В показанной на рисунке 15.2 конструкции верньера ручка 1 является сборочной единицей, представляющей собой армированное изделие. На нее разработан эскиз (рис. 15.3). Ручка верньера состоит из арматуры металлической втулки 1 и материала — пластмассы 2. В армированной сборочной единице материал приобретает установленную эскизом или чертежом форму после прессования (или заливки) в пресс-форму совместно с арматурой. Поэтому на эскизе (чертеже) армированной сборочной единицы наносят все размеры, определяющие ее форму, за исключением размеров арматуры, а также размеры, которые определяют положение арматуры относительно формуемых поверхностей. В эскизе на рисунке 15.3 нанесены все размеры, определяющие форму пластмассовой части ручки. Размер 4 мм определяет положение металлической втулки относительно торца ручки. Металлическая втулка использована при изготовлении металлопластмассовой ручки верньера как самостоятельная предварительно изготовленная деталь. Поэтому на нее выполнен отдельный эскиз (рис. 15.4, а), на котором нанесены все размеры, необходимые для ее изготовления (резьбовое отверстие М4 на эскизе втулки не показано, так как его обрабатывают после прессования ручки).  [c.299]

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]

Для контактного формования используют негативную форму (матрицу) либо позитивную форму (пуансон), изготовленные из металла, пластмасс, армированных пластиков или их сочетания. Стекломат или тканый стеклонаполнитель размещают вручную на поверхности формы, наносят кистями связующее и обкатывают формуемое изделие валиком для удаления воздуха и уплотнения материала.  [c.373]

Другим волокном, используемым в конструкциях из армированного композиционного материала, для которых необходимы высокий модуль и высокая прочность даже при повьппенных температурах, является волокно бора. О борных волокнах в форме, пригодной для конструкционных приложений, впервые упоминается в литературе в 1960 г. [31] позднее по волокнам бора был написан обзор [67].  [c.272]

Метод пропитки применяют для получения композиционного материала с внешним армированием, предназначенного для изделий, работающих на трение. Такой износостойкий материал получали методом заливки алюминиевого сплава в форму с уложенной в ней тканью из карбидов тугоплавких металлов — тантала, титана или вольфрама [163, 164]. После затвердевания структура поверхности материала представляет собой две фазы 75— 80% фазы с высокой твердостью, состоящей из карбидов и сплава матрицы. Испытания на трение показали, что армированный с поверхности тугоплавкими карбидами алюминиевый сплав 6061 имеет значительно более высокую стойкость к истиранию по сравнению с неармированным сплавом 6061, заэвтектическим алюминиевым сплавом, содержащим 18% по массе кремния, и композиционным материалом алюминий—углерод.  [c.97]

Как следует из рис. 79, вязкое поведение у приведенных пластмасс начинается в области максимума на кривой температурной зависимости затухания колебаний. Следовательно, вязкость пропорциональна гасящей способности материала. Подобная зависимость справедлива также и для армированных пластмасс [22]. Надрез влияет на величину работы, необходимой для разрушения испытуемого образца, и на положение переходной области. В момент удара образец деформируется и образуются напряжения, величина и распределение которых зависят как от формы и глубины надреза, так и от основных размеров испытуемого образца [16 и 17].  [c.72]


Катапультируемые сиденья и капсулы самолетов В 64 D 25/10-25/12 Катапульты в пусковых устройствах на аэродромах или палубах авианосцев В 64 F 1/06 Катаракты в золотниковых распределительных механизмах F 01 L 27/04 Катки опорные для гусениц, размещение и модификация на транспортных средствах В 62 D 55/14-55/15 для перемещения и транспортирования подвижного состава по путям В 61 J 1/12) Катушки [индукционные систем зажигания в ДВС F 02 Р 3/02-3/055 В 65 Н <для накопления нитевидного материала во время подачи 51/22-51/24 намотка и хранение нитевидных материалов 54/02-54/553, 75/02 рулонные (держатели 16/02-16/08, 18/02-18/06 для непрерывной подачи лент с рулонов 16/10, 18/10-18/24, 20/36, 20/38 способы и устройства для смены 19/00-19/30)>] Катушки транспортные средства для их перевозки В 60 Р 3/035 для хранения нитевидных материалов, полотнищ, лент и т. п., способы изготовления В 65 Н 75/50 шлифование торцовых поверхностей В 24 В 24 7/16) Каучук сырой, обработка перед формованием В 15/02-15/06 как формовочный материал К 7 00-21 00, 103 00-103 08) В 29 Качающиеся шайбы, поршневые двигатели с качающимися шайбами F 01 В 3/02 Керамика механическая обработка В 28 D печи для обжига F 27 В 5/00 тара из керамики В 65 D 1/00, 13/02) Керамические [детали подшипников качения F 16 С 33/56, 33/62 изделия <В 28 В армированные, изготовление фасонные, производство 1/00-1/54) шлифование В 24 В 7/22, 9/06) массы, прессование В 28 В 3/00 трубы F 16 L (9/10 соединения 49/00) узоры, имитация В 44 F 11/06 формы, конвейеры для их применения В 65 G 49/08] Кернеры В 25 D 5/00-5/02 Кертиса турбины F 01 D 1/10 Кик-стартеры F 02 N 3/04 Кили самолетов и т. п. В 64 С 5/06  [c.92]

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.  [c.423]

Часто композит представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Однако каждый слой можно армировать также непрерывными волокнами, сотканными в ткань определенного рисунка (средний ряд на рис. 1.1), которая представляет собой исходную форму, по ширине и длине соответствующую исходному материалу. Разработанные к настоящему времени геометрии армирования позволили отказаться от послойной сборки материала волокна сплетают в трехмерные структуры (нижний ряд на рис. 1.1). В некоторых случаях уже на этой стадии можно задать фор гу изделию из композита. Выбор среди возможных типов армирования осуществляется на основе экономических соображений и требований, предъявляемых к работе изделий.  [c.9]

Нетрудно показать, что решение исходной задачи совпадает с решением двойственной, если заданный объем V равен V. Приведем вначале рещение поставленной задачи для более простого случая пеармированного материала. Далее будет показано, что в ряде ситуаций к этому случаю сводится и оптимизация формы армированной колонны [24, 27].  [c.155]

Примером безмоментных оболочек являются сосуды, изготовленные методом намотки. Расчет таких конструкций основан на нитяной модели материала, согласно которой внутреннее давление и силы, приложенные по краям оболочки, воспринимаются армирующими волокнами и вызывают в них только растягивающие напряжения. Такие конструкции и методы их расчета рассмотрены в работах Рида [67], Росато и Грове [6в], Шульца [75]. Современные методы расчета сосудов давления и корпусов двигателей изготовленных методом намотки [24, 42], учитывают изгиб оболочки, вызванный соответствующим характером нагружения, а также несимметрией распределения геометрических параметров или упругих свойств материала по толщине. Изгиб-ные напряжения, предсказываемые в этом случае теорией малых деформаций, могут оказаться значительными. Однако рассматриваемые оболочки обычно деформируются таким образом, что в процессе нагружения остаются безмоментными. На безмоментной теории, предусматривающей большие деформации системы, основан метод определения равновесных форм армированных оболочек. Обзор исследований, посвященных оптимизации безмоментных оболочек из композиционных материалов, приведен в работе Ву [901.  [c.148]

На арматуру выполняется самостоятельный чертеж (рис. 191) или несколько чертежей, если арматура представляет собой несколько деталей или сборочную единицу. На чертеже армированной детали в отличие от сборочного отображают форму и проставляют размеры для всех элементов изделия в окончательном виде (кроме размеров выступаюших частей арматуры). По этим данным проектируют формообразующие поверхности у матрицы и пуансона с учетом усадки материала. Чертеж армированной детали обычно содержит дополнительные изображения элементов, неясных на основных проекциях, с соответствующими размерами этих элементов. На чертеже армированных деталей могут быть указания о дополнительной обработке отдельных элементов детали.  [c.245]

Заметим, что исполнительных размеров стержень 1 не содержит, а дан установочный размер 8,5 0,1. Таким образом, на чертеже полностью отображена форма детали и имеются все необходимые размеры, позволяющие изготовить прессформу (прессформа была показана на рис. 189). Отметим, что при назначении размеров для оформляющих элементов прессформы учитывают усадку материала. Степень чистоты рабочих поверхностей прессформы определяется чертежом армированной детали. Иначе говоря, какова чистота оформляющих поверхностей прессформы, такова будет чистота соответствующих поверхностей готового изделия. При рассмотрении чертежа и спецификации армированной детали видно, что на стержень — поз. / имеется отдельный чертеж (см. рис. 191), по которому он изготовляется, а для заполнителя 2 отдельного чертежа не требуется.  [c.249]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

Армирование позволяет также повысить точность и прочность получаемых изделий. Арматуру в виде винтов, гаек, штырей и т. п. (рис. 8.12, а, б) закрепляют с помощью кольцевых выточек, буртиков или канавок. Для предотвращения проворачивания на наружных поверхностях этих деталей делают рифления, насечку или плоские грани. Мелкую арматуру в виде пластинок (клеммы электрических разъемников) закрепляют с помощью боковых вырезов или отверстий (рис. 8.12, в, г). Проволочную арматуру закрепляют путем расплющивания или загибания второго конца (рис. 8.12, д, е). Конструкция пресс-формы должна надежно фиксировать арматуру и предотвращать возможность затекания материала в гнезда для установки арматуры.  [c.440]


Одну из наиболее сложных задач при изготовлении пространственно-армированных композиционных материалов представляет выбор связующего 31, 68], особенно при изготовлении материалов, образованных системой двух, трех и п нитей 59]. Материалы могут иметь как обычную, так и пиролизованную матрицу. Сложность подбора связующего обусловлена трудностью пропитки. При повышенных толщинах на обычных пропиточных машинах нельзя полностью удалить из материала воздух, который при формовании приводит к пористости, поэтому пропитку таких материалов осуществляют в вакууме и под давлением в специальных пресс-формах. Необходимое содержание связующего достигается изменением степени уплотнения материала чем толще материал, тем сложнее его пропитка. В качестве связующего используют ннзковязкие термореактивные смолы, которые при правильном выборе режимов и хорошо отлаженном технологическом процессе позволяют достигать плотности композиционных материалов на уровне теоретической. Так, для материалов, образованных системой двух нитей, при коэффициенте армирования 1 = 0,45 плотность р = = 1,80 г/см (теоретическая 1,80 г/см ), а при х = 0,50 р = 1,85 г/см (теоретическая 1,86 г/см ),  [c.12]

Рассмотрена задача о минимизации перемещения верхнего Сечения колонны, возводимой с детерминированной или случайной скоростью. Изучены задачи ироектирования армированных балок при ограничениях по прочности или по жесткости. Задачи оптимального,""проектирования балок по жесткости исследованы в минимаксной и стохастической постановках. Далее решена задача об усилении полого вязкоупругого цилиндра многослойной обмоткой. Изучены оптимальные формы стареющих вязкоупругих тел при их простом нагружении. Для каждой из перечисленных задач оптимизации конструкций выведены соотношения, определяющие решение в общем случае, приведен их анализ и рассмотрен (численно или аналитически) вид оптимальных форм для конкретных ситуаций. Отметим, что модель неоднородно-стареющего упругоползучего тела служит, в частности, для адекватного отражения картины распределения возрастов материала. По этой причине функция, характеризующая процесс неоднородного старения в теле, может рассматриваться как управление. Выбор указанного управления может осуществляться, например, из условия оптимальности характеристик прочности и жесткости. Указанное обстоятельство является источником постановки ряда принципиально новых задач оптимизации конструкций.  [c.10]

Равенства (34) показывают, что прямоугольный параллелепипед, изготовленный из материала с общей анизотропией, при одноосном однородном напряженном состоянии превращается в не-прямаугольный параллелепипед (на рис. 1, а показано тело, для которого плоскость является плоскостью симметрии). В случае изотропного материала прямоугольный параллелепипед остается прямоугольным (рис. 1, б). Эти различия в поведении анизотропных и изотропных материалов при одноосном напряженном состоянии вызывают некоторые трудности при определении механических характеристик композиционных материалов в направлении, не совпадающем с осью симметрии. Образец, обычно используемый при таких испытаниях, представляет собой длинную полоску (отношение длины к ширине равно - 5—10), вырезанную под некоторым углом к оси симметрии из элементарного армированного слоя или слоистого материала. При одноосном нагружении в продольном направлении образец ведет себя как анизотропное тело с плоскостью упругой симметрии, совпадающей с плоскостью образца, т. е. стремится принять в этой плоскости форму параллелограмма. Захваты, в которых закрепляют образец, препятствуют его свободной деформации, сохраняя пер-воннчальное. направление закрепленных кромок. Как показано в работе Пагано и Халпина [45], в плоскости образца при этом возникает изгибающий момент и при деформировании образец принимает 1У-образную форму (рис. 2).  [c.24]

Несмотря на то, что количественные критерии, определяющие как вязкое, так и хрупкое разрушение композиционных материалов при комбинированном нагружении, еще далеки от завершения, состояние этого вопроса достигло такого уровня, при котором возможно достаточно точно предсказать поведение проектируемых или рассчитываемых конструкций, если известны основные характеристики композиционного материала. В отличие от металлов слоистый композиционный материал обладает такими особенностями, как неоднородность и анизотропия. По микроструктуре материал является двухфазным и состоит из волокон и матрицы или связующего (полимерного, металлического и др.), а макроструктура материала образуется из ориентированных слоев волокон, заключенных в связующем (рис. 3). Явления, протекающие на микроуровне, определяют формы разрушения и другие подобные характеристики материала, рднако механизм и взаимодействие этих явлений изучены еще недостаточно полно. Большинство инженерных расчетов основано поэтому на макромодели, согласно которой основным элементом материала, в котором происходит разрушение, является армированный слой.  [c.67]

Линии уровня средних изгибных напряягений, соответству-юпщх этой волне, для пластин из эпоксидного углепластика с углами армирования +15 и +45° при поперечной импульсной нагрузке в форме (42) показаны на рис. 28. Отметим, что поскольку характер распространения рассматриваемой волны в слоистой пластине изотропный, волновой фронт имеет круговую форму. Напряжения, соответствующие второй и третьей изгибным волнам, оказываются малыми. На рис. 29 показана построенная с помощью вычислительной машины пространственная картина распределения изгибных напряжений в пластине из композиционного материала с углами армирования +45°.  [c.325]

Для того чтобы получить другую модель, положим, что все пуассоновские точки вместе с их окрестностями принадлежат одному материалу. Можно считать, что этот материал заполняет круг радиуса го с центром в каждой точке, а остальная часть плоскости состоит из другого материала. Если <С 1р, где Zj, = [У/Л ]>/з — среднее расстояние между пуассоновскими точками, то мы имеем случай малой концентрации кругов в матрице. Однако при Го 0(1р) в описанной выше модели мнотие круги перекрываются и модель не годится для описания материала с круговыми включениями. Чтобы получить модель такого материала, следует ввести правило, согласно которому круги, соответствующие соседним пуассоновским точкам, в случае необходимости смещаются так, чтобы они не перекрывались. Это, разумеется, относится к построению модели материала, армированного волокнами с круговыми поперечными сечениями. Форма включений не обязательно должна быть круговой она может быть произвольной. Всю процедуру и в этом случае можно выполнить на ЭВМ, построив таким образом случайное поле е (х).  [c.259]

В теории изотропных материалов с кинематическими ограничениями, предложенной Адкинсом и Ривлином [5] (см. также Адкинс [2—4], Грин и Адкинс [15]), энергия деформации выбирается в форме, которую она имеет для изотропных упругих материалов, а не для материалов с трансверсальной изотропией. Для изотропного материала W не зависит от /з, следовательно, в выражении для S следует положить = 0. Как отметил Спенсер [40], это предположение приемлемо, по-видимому, лишь тогда, когда материал армирован волокнами, далеко отстоящими друг от друга. Аналогичное предположение было использовано Прагером [28] при иследовании упругопластического поведения.  [c.348]

Поверхность прочности однонаправленного волокнистого композита, рассматриваемого как однородный анизотропный материал, должна быть функцией следующих четырех напряжений напряжений в направлении волокон Од максимальных касательных напряжений Ха, действующих в плоскости, параллельной волокнам изотропной ot и девиаторной т< компонент главных напряжений в плоскости, перпендикулярной направлению армирования. Таким образом, макроскопический критерий прочности принято задавать в следующей форме  [c.49]

Критерий прочности в форме полинома четвертой степени в общем виде не удобен для целей неразрушающего контроля прочности изделия. Были произведены соответствующие преобразования, позволившие представить указанный критерий в форме, удовлетворяющей требованиям неразрушающего контроля (табл. 2.9). Для определения прочности изделия при сложном напряженном состоянии необходимо знание следующих параметров предела прочности композиционного материала в направлении армирования 0 структурных коэффициентов степени анизотропии прочности в направлении осей упругой симметрии — а — = Опо/о о и под углом 45° к ним Ь сг45/сТо> а также соотношения между прочностью при сдвиге и прочностью при растяжении (сжатии), с == То/сГц геометрических параметров изделия, например, для труб толщина б и диаметр О, а для конических изделий также угол при вершине конуса а.  [c.184]

Основой тканых фрикционных изделий (тканой тормозной ленты, тормозных накладок и накладок сцепления) является тканый каркас из не-пропитанных асбестовых, стеклянных, базальтовых и других нитей, армированных латунной проволокой. Тканый каркас (суровую ленту) подвергают пропитке. Суровую ленту изготовляют на одно- и многочелночных лентоткацких станках. Ее сушат, пропитывают специальными составами, содержащими связующее вещество, и подвергают термической обработке. Механической обработке суровую ленту не подвергают, ее обрабатывают только на каландре для уплотнения материала и калибровки по толщине. Выпускается широкая номенклатура лент шириной 20—200 мм и толщиной 4—12 мм (ГОСТ 1198—78). Пропитанные заготовки тормозных накладок бакелнзуют в горячих пресс-формах на гидропрессах и шлифуют кругами. Аналогично изготовляют тканые накладки сцепления, но тканая суровая лента в отличие от тормозных накладок имеет некоторую кривизну. Перед пропиткой на специальных станках заготовке придают форму кольца, сушат, пропитывают фенолформальдегид-ной смолой и подсушивают при 60— 70 °С в течение 6—7 ч. Высушенные полуфабрикаты бакелизуют в горя-  [c.174]


Влияние конструкционного материала тарелок на каплеобразо-вание и коалесценцию капель в системе жидкость—жидкость показано в [18 ]. При использовании стальных тарелок образуются капли неправильной формы применение тарелок из тефлона, приводит к образованию удлиненных капель. Тарелки из стали, армированные сверху тефлоном, способствуют получению капель более правильной формы, что улучшает коалесценцию, тогда как тарелки из тефлона, армированные сверху сталью, — получать капли шарообразной формы при равномерной коалесценции.  [c.317]


Смотреть страницы где упоминается термин 3. 91, 92, 94, 95-Формы армированные — Материал : [c.202]    [c.231]    [c.103]    [c.236]    [c.459]    [c.253]    [c.152]    [c.5]    [c.686]    [c.153]    [c.19]    [c.10]    [c.139]    [c.331]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.3 , c.92 , c.93 ]



ПОИСК



Армирование

Формованные материалы



© 2025 Mash-xxl.info Реклама на сайте