Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СПЛАВЫ Соединения сварные — Применени

Стыковые сварные соединения обоих сплавов были изготовлены с применением дуговой электросварки плавящимся (расходуемым) электродом в среде защитного газа в нижнем и вертикальном положениях сварки. На рис. 1 показана разделка свариваемых кромок при подготовке к  [c.106]

Особенности образования соединения при сварке, связанные с неравномерным нагревом и воздействием деформационного цикла, неизбежно приводят к неоднородности структуры и свойств отдельных его зон. С повышением уровня легирования стали или сплава и особенно с применением термически упрочняемых материалов неоднородность заметно возрастает. Она неизбежна в сварных соединениях разнородных сталей, находящих широкое применение в конструкциях, работающих при высоких температурах.  [c.56]


Применение таких присадочных сплавов обеспечивает сварным соединениям кратковременную прочность при рабочих температурах, равную 0,8 —0,9, и длительную прочность 0,7 —0,8 от этих же характеристик основного материала.  [c.329]

Во всех отраслях техники применяют два вида неразъемных соединений — заклепочные и сварные. Заклепочные соединения необходимы тогда, когда металлы, из которых изготовлены соединяемые детали машин, не поддаются сварке, а также в тех случаях, когда соединение подвергается воздействию вибрации. Так, заклепочные соединения широко используются в самолетостроении, при изготовлении металлических конструкций из легких сплавов и пр. Там, где это возможно, стремятся заменить заклепочные соединения сварными. Применение сварки вместо клепки имеет ряд преимуществ. Главные из них — уменьшение трудоемкости и экономия металла.  [c.340]

Металлоконструкции из алюминиевых сплавов изготовляют сварными или клепаными — способ соединения элементов конструкции определяется маркой сплава. Так, применение сварки целесообразно для термически неупрочняемых сплавов.  [c.219]

Сварное соединение — неразъемное соединение деталей с помощью сварного шва. Сварка деталей основана на использовании сил молекулярного сцепления при местном нагреве их до плавления (сварка плавлением — термическая, газовая, электродуговая и ее разновидности) или разогреве стыка с применением давления (сварка давлением — кузнечная, трением, индукционная, электро-контактная). В настоящее время освоена сварка всех конструкционных сталей, включая высоколегированные, цветных сплавов и пластмасс.  [c.24]

Важной задачей является правильный выбор способа сварки в соответствии с назначением, формой и размерами конструкций. Назначение способа сварки в значительной степени определяется свариваемостью, особенно при соединении разнородных материалов, конструктивным оформлением сварных соединений, степенью их ответственности и производительностью процесса. Необходимо также учитывать тип соединений, присадочный материал, приемы и обеспечение удобства выполнения сборочно-сварочных соединений. Эти условия предопределяют механические свойства соединений и допускаемые напряжения, необходимые для прочностных расчетов конструкций. Так, для сварки длинных швов встык более технологично применение дуговой автоматической сварки. Толстостенные элементы соединяют электрошлаковой сваркой. Для сварки внахлест тонколистовых материалов рационально применение контактной сварки. Некоторые виды свариваемых материалов (алюминиевые и титановые сплавы, нержавеющие стали и т. п.) требуют надежной защиты зоны сварки от окисления, т. е. применения аргонно-дуговой, электронно-лучевой и диффузионной сварки. Необходимо также учитывать возможности механизации и автоматизации процесса выбранного способа сварки.  [c.164]

Сплав ВТ6 может свариваться точечной, стыковой и аргоно-дуговой сваркой с применением защитной атмосферы. Предел прочности сварного соединения составляет 90% прочности основного материала. После сварки необходима термическая обработка для восстановления пластичности (отжиг при 700—800°С). Сплав обладает удовлетворительной обрабатываемостью резанием. При механической обработке рекомендуется применять резцы нз твердых сплавов.  [c.380]


В течение многих лет при изготовлении емкостей для жидких газов используют никелевые стали. Интерес к этим материалам повысился вновь в связи с их применением в газгольдерах и баках для ожиженного природного газа. Это потребовало разработки сталей, не только имеюш их повышенные свойства в деталях больших сечений (такие детали ранее не находили широкого применения), но и обладающих в сварных соединениях массивных деталей такими же характеристиками, как и основной материал. В таких случаях используют также и аустенитные стали. Однако вследствие более низкого предела текучести и боль-и ей стоимости они находят ограниченное применение в специальных конструкциях, где требуется минимальная толщина стенки. Вследствие небольшого удельного веса и высокой коррозионной стойкости алюминиевые сплавы привлекают внимание специалистов как материалы для криогенной техники.  [c.46]

Из всех исследованных сплавов сплав 7005 обладает наиболее благоприятным сочетанием прочности и вязкости для случаев низкотемпературного применения при более высокой прочности, чем сплавы 5083 и 5456, но более высокой вязкости, чем сплавы 2014 и 7039. В работе получены также данные по чувствительности к надрезу и прочности сварных соединений.  [c.175]

Успешное применение алюминиевых сплавов в условиях морских атмосфер определяется правильным выбором материала и технологии изготовления конструкции. Причиной ускоренного разрушения может стать и плохое качество выполняемых работ. Очень часто разрушение происходит в сварных соединениях.  [c.156]

Внедрение сварки в самые ответственные изделия было обеспечено созданием советскими учеными методов расчета, гарантирующих эксплуатационную прочность сварных конструкций. Многолетний опыт проектирования и изготовления сварных конструкций в СССР определил разработку комплексного метода проектирования конструкций и технологии их изготовления, рациональный выбор принципиальных схем конструкций и основного металла для них, применение сталей повышенной и высокой прочности, высокопрочных сплавов цветных металлов, экономичных профилей и штамповочных заготовок, а также комбинированных сварных конструкций (из проката, литья и поковок). Характерной чертой методов расчета сварных соединений, разработанных советскими учеными, является стремление связать вопросы прочности с особенностями сварочной технологии, в то время как аналогичные зарубежные методы расчета крайне слабо связаны с технологией производства.  [c.141]

Область применения сварные швы стыковых соединений конструкций из ферромагнитных металлов и сплавов, выполненных дуговой и газовой сваркой.  [c.470]

Развитие сварочной техники сопровождалось стремлением повысить механические свойства и главным образом прочность и надежность сварных соединений. Разработка высококачественных электродов для ручной сварки, электродной проволоки, флюсов и всевозможных защитных средств, подбор рациональных технологических процессов, применение автоматизированного оборудования для дуговой и контактной сварки, создание различных новых методов сварки, способствующих получению сварных соединений из различных металлов и сплавов, хорошо работающих в условиях статических, повторно статических, ударных и вибрационных нагрузок при низких и высоких температурах, в различных химических средах обеспечили возможность создания сварных соединений, эк-9 131  [c.131]

Микроструктура сплава АМц представляет собой смесь кристаллов твердого раствора А1(Мп) и кристаллов химического соединения А1еМп. Мелкие кристаллы А1бМп, располагаясь между крупными кристаллами А1(Мп), препятствуют росту последних при отжиге. Еще недавно сплав АМц имел широкое применение в авиационной промышленности (табл. 5). Из него делали штампованные сварные баки для бензина и масла. В настоящее время вместо него применяют сплав АМг, механические свой-ства-которого более высокие (табл, б).  [c.91]

Установленные в настоящее время пределы максимально допустимого содержания водорода не являются абсолютными. В том случае, когда титановые сплавы должны работать прп низких температурах, содержание в них водорода долж1ю быть пнже указанных. Для крупнозернистого материала допуски на максимальное содержание водорода в титане должны быть значительно ниже, чем для мелкозернистого материала. При применении титана и его сплавов в сварных соединениях уровень максимально допустимых содержаний водорода следует устанавливать по результатам нспытаний на замедленное хрупкое разрушение сварных образцов, так как ноле напряжений в шве и околошовной зоне способствует направленному перемещению атомов водорода и развитию нреждевремешюго разр шения сварных деталей.  [c.500]

Флюс ЖН-1 с успехом использован прн разработке технологии сварки. монеля НМЖМц 28-2,5-1,5, весьма коррозионно-стойкого и прочного сплава на никелевой основе. Применение этого флюса обеспечило отсутствие пор и трещин в металле шва, высокие механические и коррозионные свойства сварных соединений (табл. 5.11).  [c.387]

Н. И. Лопатиным) средней прочности сварных и клее-сварных соединений сплава Д16Т, выполненных с применением двусто-  [c.95]

Экспериментально исследовалась прочность на срез клее-сварных соединений на образцах из сплавов Д16Т, АМгб с применением различных, в основном новых клеев и технологии их использования. Сравнительные испытания при обычной температуре проводили на одноточечных образцах внахлестку, выполненных без клея с последующим его нанесением и полимеризацией, а также сваренных по слою жидкого клея и затем отвержденного при оптимальных (для данного клея) температурных условиях. Контрольные образцы изготовляли без клея. Для некоторой оценки дополнительной прочности, создаваемой клеевой прослойкой, испытывали также клее-сварные образцы с высверленными сварными точками. Кроме того, изучали работоспособность клее-сварных соединений на различных одноточечных образцах, выполненных с применением теплостойкого клея ВК 7, при повышенных температурах. Результаты испытаний приведены в табл. 53, 54 и 68—71. Одноточечные клее-сварные образцы разрушались в основном в плоскости соединения.  [c.127]


В табл. 74 приведены средние значения разрушающей нагрузки, полученные в результате сравнительных испытаний на отрыв специальных одноточечных сварных, клее-сварных (с различными клеями) и однотипных им клепаных образцов из сплава Д16Т, в которых работа сварной точки протекает в условиях, близких к равномерному отрыву, как это часто имеет место в реальных конструкциях. Данный образец (рис. 19, а) состоит из двух точечных (жестких) цилиндрических стаканчиков, соединенных между собой сварной точкой в сочетании с клеем или только сварной точкой, или заклепкой. Работоспособность клее-свар-ных соединений в этом случае оказалась заметно выше, чем обычных сварных при таких же условиях. Наибольшей прочностью обладают, так же как и при работе на срез, клее-сварные соединения, выполненные с применением более эластичных клеев ВК 1МС и КЛН 1. Работоспособность клепаных соединений заметно ниже сварных и особенно клее-сварных соединений.  [c.134]

Целесообразно применение прессованных, штампованных и, гнутых профилей. При конструировании алгонинневых балок следует избегать концентрации напряжений, особенно в зонах сварных соединений. На рис. 14-18 показана конструкция сварных балок из алюминиевых сплавов. Швы не находятся в зонах наибольших нормальных напряжений. На рис. 14-19 изображена конструкция сварной подкрановой балки из алюминиевого сплава. В ней применены стыковые соединения сварные швы по возможности вынесены за пределы зон со значительными концентраторами напряжений.  [c.327]

Некоторые сплавы алюминия (Д16А, В95, АК6) после термической обработки приобретают высокие прочностные свойства. Для изготовления сварных конструкций в судостроении такие сплавы не нашли широкого применения вследствие низких коррозионных свойств и ухудшения механических свойств сварного соединения по сравнению с основным металлом. Для сварки этих сплавов трудно подобрать присадочный металл, который в литом состоянии обладал бы механическими свойствами, близкими к свариваемому металлу. Кроме того, в процессе сварки, вследствие теплового воздействия, происходит отпуск свариваемого металла в околошовной зоне, что снижает его прочность.  [c.12]

Сварочная проволока при всех способах сварки в среде за щитных газов должна быть одинакового химического состав, с основным металлом. Это обеспечивает сварному соединениь не менее 90% прочности свариваемого металла. Равнопрочност сварного соединения основному металлу при сварке магниевы. сплавов достигается за счет применения проволоки, содержаще на 1,5—2,0% больше магния, чем основной металл (но не боле 7,0%). Повышенное содержание магния в проволоке необходим для того, чтобы компенсировать потери магния при выгоранш в процессе сварки. При сварке разнородных металлов марк присадочной проволоки выбирают по свариваемому металл с большим содержанием магния.  [c.116]

Свариваемые сплавы системы А —2п—Мд (1915, 1911) при определенных условиях склонны к коррозионному растрескиванию и расслаивающей коррозии. Сплав 1935 нечувствителен к коррозионному растрескиванию, однако обладает пониженным сопротивлением расслаивающей коррозии. Оптимальная коррозионная стойкость сварных соединений рассматриваемых сплавов достигается при условии применения присадочной проволоки Св1557 и ступенчатых режимов искусственного старения после сварки 100 °С, 10— 20 ч -f 175 °С, 4—б ч.  [c.75]

Для получения сварных соединений, равноценных по работоспо-собностн основному металлу, при конструировании сварных загоао-вок следует по возможности выбирать хорошо свариваемые металлы. К таким металлам относятся спокойные низкоуглеродистые стали и многие низколегированные стали, ряд сплавов цветных металлов, применение которых не ограничивается какими-либо требованиями к виду и режимам сварки.  [c.246]

Установленная- целесообразность применения при сварке дугой в вакууме в Качестве плавящегося электрода проволоки того же состава или несколько более легированной подтверждена и другими экспериментами. Ток при АДЭСПЭа в разделку сплава ЗВ толщиной 15— 60 мм проволокой ВТбСв (т. е. той же системы, но более легированной) были получены равнопрочные сварные соединения, имеющие большую прочность, пластичность и ударную вязкость, чем основной металл.  [c.144]

Коэффициент затухания 5 в значительной степени зависит от отношения средней величины зерна d в металле и длины акустической волны X. Чем больше отношете к/d, тем меньше коэффициент затухания. Коэффициент затухания обратно пропорционален частоте/(так как к = С//). Короткие волны большой частоты легко затухают, отражаясь от границ зерен кристаллов. Для малоуглеродистых сталей X/d > 10, затухание мало и возможно применение ультразвуковых волн для контроля. При k/(i< 10 затухание происходит наиболее интенсивно. В деталях, выполненных электро-шлаковой сваркой, в сварных соединениях из аустенитиых сталей, меди, чугуна, где структура крупнозер1шстая, ультразвуковой контроль затруднен, так как длина волны сопоставима с величиной среднего зерна. В алюминиевых и титановых сплавах контроль УЗК не вызывает затруднений.  [c.170]

Широкое применение при производстве баков и емкостей из ixjhko-листового металла находит также контактная шовная сварка. Этим способом сваривают углеродистые и низколегированные стали и алюминиевые сплавы толщиной до 3 мм. При этом используют варианты соединения в нахлестку, с отбортовкой кромок, с раздавливанием кромок и их комбинации. Данный способ обеспечивает герметичность сварных конструкций и высокую производительность работ.  [c.25]

Г ис 2 4 Распределение тнер)Д(к ти в сварных соединениях оболочковых конструкций, выполненных из высокопроч1п.1х сталей и сплавов с применением мягких присадочных проволок  [c.76]

Сплав удовлетворительно сваривается аргоно-дуговон сваркой плавлением в атмосфере нейтральных газов с присадкой из сплава ВТ1 и без нее. Прочность сварного соединения составляет 90% прочности основного металла. Угол загиба сварного шва, полученного без присадки, составляет 50—80°, с применением присадки 40—60°. При сварке деталей сложной формы необходим отжиг для снятия напряжений.  [c.376]

Обычная коррозионная стойкость материала не является показательной в отношении склонности его к коррозионному растрескиванию. Известно, например, что высокопрочные деформируемые сплавы системы А1—Zn—Mg при хорошей общей коррозионной стойкости обладают высокой чувствительностью к КПН, особенно в зоне сварных соединений, что затрудняет их применение [64]. Углеродистые и малолегированные стали весьма стойки к общей коррозии в щелочной среде при повышенных температурах, в то же время они склонны к КПН в этих средах. Наоборот, многие магниевые сплавы, весьма чувствительные к общей коррозии, не проявляют существенной склонности к разрушению типа КПН, то же можно сказать о широко распространенном алюминиевом сплаве АК4 и др. Вместе с тем каверны, язвы и другие коррозионные повреждения, являясь концентраторами напряжений, часто служат очагами коррозионного растрескивания. Если материал склонен и к общей коррозии, и к КПН, трудно разделить эти два процесса как в начальной стадии, так и при развитии разрушения. Так, коррозионное растрескивание титановых сплавов ВТ6, ВТ 14 (термоупрочненного)  [c.73]


Сопротивление коррозии сварных соединений из сплавов ВАД1 и М40 пони женное, так как они обнаруживают склонность к межкристаллитной коррозии Этот недостаток почти полностью устраняется путем термической обработки сварных соединений (закалка и старение). Сварные соединения из сплавов ВАД1 и М40 требуют надежной защиты от коррозии и не рекомендуются для применения в морских условиях.  [c.72]

Система 14 охлаждения стенда обеспечивает поддержание температуры натрия в основном контуре на требуемом уровне, а также охлаждение натрия перед холодными ловушками и индикаторами окислов, электромагнитных насосов, арматуры, узлов уплотнения испытываемого насоса, электропривода насоса, системы смазки подшипников ГЦН. Учитывая опасные последствия взаимодействия натрия с водой (как при попадании воды в контур стенда из-за возникновения течи в охлаждающих устройствах, так и в случае вытекания натрия из контура при разуплотнении стенда), ее применение в качестве охлаждающей среды на стенде недопустимо [17]. Целесообразно в качестве охлаждающей среды в замкнутых системах охлаждения применять эвтектический сплав натрий—калий или кремнийорганическую жидкость (полиэтил-силоксановая ПЭС-13)—силикон [18]. Отвод тепла от эвтектики по соображениям безопасности осуществляется в теплообменнике 2, охлаждаемом воздухом, а силикон можно охлаждать водяным холодильником, вынесенным из помещения стенда. Система охлаждения эвтектикой выполняется герметичной, с расширительной емкостью, соединения трубопроводов — сварными. В разомкнутых системах охлаждения в качестве охлаждающей среды применяется воздух. Использование воздушной разомкнутой системы охлаждения существенно упрощает конструкцию спенда и его обслуживание. Но охлаждаемые воздухом холодиль -ники требуют более развитых со стороны воздуха поверхностей  [c.254]

Фиг. 31. Разрывные образцы а — цилиндрический для материалов, обладающих достаточной пластичностью 6 — цилиндрический с резьбовыми головками для испытаний, требующих особо тщательного центрирования 8 — цилиндрический для испытаний закалённых сталей с малой пластичностью 2 — цилиндрический с головками для крепления клиновыми захватами, применяемый при испытаниях мягких и пластичных материалов (без помощи экстензометров) д —цилиндричАкие для сталей п цветных металлов, применяемые при испытании на прессе Гагарина и машине ЦНИИТМАШ е — плоский пропорциональный для испытаний катаною листового металла (стали и цветных сплавов) толщиной до 25 мм (а по толщине листа) ж — плоский для испытаний сварных соединений встык при снятом усилении когда прочность сварного шва предполагается заведомо меньше прочности основного металла, допускается применение образца без головок (5=6). Фиг. 31. Разрывные образцы а — цилиндрический для материалов, обладающих достаточной пластичностью 6 — цилиндрический с резьбовыми головками для испытаний, требующих особо тщательного центрирования 8 — цилиндрический для испытаний закалённых сталей с малой пластичностью 2 — цилиндрический с головками для крепления клиновыми захватами, применяемый при испытаниях мягких и пластичных материалов (без помощи экстензометров) д —цилиндричАкие для сталей п цветных металлов, применяемые при испытании на прессе Гагарина и машине ЦНИИТМАШ е — плоский пропорциональный для испытаний катаною листового металла (стали и цветных сплавов) толщиной до 25 мм (а по толщине листа) ж — плоский для испытаний сварных соединений встык при снятом усилении когда прочность сварного шва предполагается заведомо меньше прочности основного металла, допускается применение образца без головок (5=6).
Стыковое сварное соединение цилиндра с цилиндром наиболее важно для труб парогенератора. Возникающие при этом дефекты представляют серьезную проблему из-за большого числа сварных швов в парогенераторе. Основными из них являются непровар, пористость и воздушные пузыри (рис. 7.5) [6]. Большинство обычно используемых материалов не подвержено трещинообразо-ванию, однако трещины могут возникнуть при сварке мартенсит-ных и стареющих аустенитных сталей. Некоторые стали, относительно редко применяемые в парогенераторах, особенно чувствительны к трещинам. В частности, образование трещин в зоне термического влияния очень трудно предотвратить в мартенсит-ной стали с 12% Сг, потому что объемные изменения связаны с мартенситным переходом. Никелевые стали также склонны к трещинообразованию как в сварном шве, так и в зоне термического влияния. Трещинобразование в сталях с 12% Сг можно предотвратить, используя их предварительный нагрев, а в никелевых сплавах — используя специальный присадочный металл, например проволоку 1псо А , и в обоих случаях можно свести к минимуму при ограничении тепловой мощности дуги и использовании высококачественных проволочных электродов или при применении пульсирующей дуги. Очень серьезная проблема при сварке труб парогенератора связана с наплавом, получающимся на внутренней стороне трубок. Обычно его пытаются удалить при протяжке, но этот способ не очень эффективен, особенно когда сварной шов находится в центральной части длинной трубы. Первоначально многие сварные узлы такого рода получали контактной стыковой сваркой, причем в критический момент в трубу под давлением подавали инертный газ, чтобы предотвратить натек металла внутрь. К сожалению, уловить четкую грань между образованием наплава и полным требуемым проплавлением в этом случае очень трудно, так как даже случайные колебания элект-  [c.75]


Смотреть страницы где упоминается термин СПЛАВЫ Соединения сварные — Применени : [c.185]    [c.499]    [c.499]    [c.158]    [c.353]    [c.208]    [c.408]    [c.144]    [c.104]    [c.127]    [c.187]    [c.70]    [c.32]    [c.154]    [c.237]    [c.92]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.152 , c.155 ]



ПОИСК



Сплавы Применение



© 2025 Mash-xxl.info Реклама на сайте