Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластически-деструкционный характер деформирования

Пластически-деструкционный характер деформирования  [c.12]

В этой связи в гл. 1 рассмотрены основные положения о пла-стически-деструкционном характере деформирования поликри- сталлических материалов, обусловленном развитием и накоплением приводящих к разрушению микроповреждений, и критерии структурного состояния пластически-деформированного металла, позволяющие оценить степень его деструкции (нарушений сплошности), а следовательно, и степень пригодности к эксплуатации.  [c.5]

В процессе пластической деформации происходит взаимодействие дефектов кристаллической решетки, в частности, дислокаций, которое обусловливает деформационное упрочнение металлов. Современные теории стремятся объяснить наблюдаемые экспериментальные кривые деформационного упрочнения и определить зависимости напряжений и деформаций, исходя, в основном, из расположения и взаимодействия дислокаций. Справедливость различных теорий, каждая из которых содержит ряд произвольно выбранных параметров, обусловливается большим или меньшим соответствием экспериментальным данным [53]. Принципиально новые научные положения о стадийности пластической деформации, рассмотренные выше, отражают развитие и накопление в материале повреждений — деструкционный характер деформирования. Изучение напряжений и деформаций и их соотношения при деформировании с позиций выявления и оценки нарушений сплошности в материале и полученные в этом направлении результаты позволили установить закономерности поведения материала, вскрывающие деструкционный характер деформирования. Впервые на диаграммах напряжение — деформация выявлена критическая точка, которая определяет переход к преимущественно деструкционной стадии деформации. На основании параметров диаграммы 5—61/2 разработаны пути количественной оценки степени деструкции пластически деформированного металла.  [c.22]


Итак, на диаграммах истинное напряжение — остаточная деформация установлена точка перелома А, которая определяет начало деструкционного характера развития процесса пластического деформирования. До точки перелома нарушений сплошности либо нет, либо они имеют вид обособленных мик-ропор и микротрещин, но не влияют на механическое поведение образца в целом. За точкой перелома процесс деформации определяется развитием микроразрушений — деструкцией материала.  [c.14]

Диаграммы одноосного растяжения в координатах 5—61/2, а также диаграммы Я—5 и Я—б / отчетливо отражают механику деформирования металлов и выявляют стадийный характер деформирования. Изучение напряжений и деформаций и их соотношений при растяжении различных поликристаллических материалов показало, что процесс деформации, по крайней мере, трехстадийный стадийность отражает степень развития и накопления микроразрушений в процессе деформирования. При этом лишь на первой стадии до точки перелома А удлинение происходит практически без нарушений сплошности. Основной процесс деформации является пластически-деструкционным. На второй стадии нарушения сплошности материала накапливаются по всему объему образца. Устойчивый характер деструкции материала в процессе деформирования определяет степень его добротности, а следова-. тельно, качество, эксплуатационную надежность и долговечность материала. Таким образом, коэффициент деструкции (добротности), позволяющий оценить состояние деформированного материала по наличию развивающихся в нем микроразрушений, имеет важное прикладное значение.  [c.15]

Исследовали образцы из отожженной меди, подвергнутой фрикционному упрочнению при нагрузке 10 МПа. На рис. 14, а приведены результаты исследования изменения р по глубине меди отожженной (кривая 1) и фрикционно упрочненной (кривая 2) кривая 3 дает представление об идентичном для обоих образцов распределения 3 в слое толщиной до 500 мкм. В тонком поверхностном слое р = 28-10" рад, что значительно превышает значение р при деформировании меди в области равномерного удлинения при растяжении. Эти данные свидетельствуют о том, что по структурному состоянию материал приповерхностного слоя находится на второй пластически-деструкционной стадии, т. е. его формоизменение при деформировании сопровождается деформацией деструкционного характера, связанной с интенсивным развитием микроскопических повреждений.  [c.24]

При трении число воздействий индентора пропорционально суммарной деформации, поэтому изменение ширины дифракционных линий от числа воздействий индентора можно представить в координатах (рис. 46). Как и в условиях объемной малоцикловой усталости, при трении изменение ширины дифракционных линий носит трехстадийный характер. Участок АВ характеризует пластическую стадию процесса. На этой стадии происходит упрочнение материала, интенсивный рост микронапряжений и дробление блоков, в результате чего ширина линии (220) a-Fe увеличивается. Участок S — стадияпластически-деструкционная, вовремя которой возможно нарушение сплошности в отдельных микрообъемах, что замедляет рост ширины линии. Стадия D — полностью деструкционная. На этой стадии в результате образования микротреш ин происходит релаксация микронапряжений, уменьшение плотности дислокаций, а соответственно и ширины линии. В дальнейшем процесс упрочнения и разрушения иериодически повторяется, однако чисто пластическая компонента (участок D Е) выражена уже не так сильно, как на начальном этапе деформирования, процесс развивается уже в наклепанном слое. Таким образом, и при трении, и при объемном циклическом деформирования наблюдается общий, трехстадийный характер изменения материала в процессе разрушения, однако в нервом случае стадия образования магистральной трещины отсутствует. Это обусловлено тем, что при трении изменение и разрушение локализуются в тонком поверхностном слое, в микрообъемах, которые подвергаются непрерывному воздействию со стороны контртела. При объемном циклическом деформировании внешнее воздействие прикладывается ко всему образцу в целом, в этом случае возможно развитие разрушения за счет локализации его в более слабом сечении.  [c.68]


При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]


Смотреть страницы где упоминается термин Пластически-деструкционный характер деформирования : [c.6]    [c.22]   
Смотреть главы в:

Структура и износостойкость металла  -> Пластически-деструкционный характер деформирования



ПОИСК



Деформирование пластическое



© 2025 Mash-xxl.info Реклама на сайте