Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

18 — Механические свойства при при повышенных температурах 51 Применения

Широкое применение КЭП на основе меди обусловлено хорошими механическими свойствами повышенными твердостью, износостойкостью и прочностью при высоких температурах [1, с. 82].  [c.146]

Их широкое применение обусловлено хорошими механическими свойствами (повышенной твердостью, износостойкостью и прочностью при высоких температурах).  [c.82]

Коррозия цинка при повышенной температуре практически не представляет большого интереса, так как ухудшение механических свойств препятствует его применению в этих условиях.  [c.102]

Стеклоэмали, помимо улучшения внешнего вида, эффективно защищают метал-л от коррозии во многих средах. Можно подобрать такой состав эмали, состоящей в основном из щелочных боросиликатов, что она будет устойчива в сильных кислотах, слабых щелочах или в обеих средах. Высокие защитные свойства эмалей обусловлены их практической непроницаемостью для воды и воздуха даже при довольно длительном контакте и стойкостью при обычных и повышенных температурах. Известно о случаях их применения в катодно защищенных емкостях для горячей воды. Наличие пор в покрытиях допустимо при их использовании совместно с катодной защитой, в противном случае покрьггие должно быть сплошным, причем без единого дефекта. Это означает, что эмалированные емкости для пищевых продуктов и химических производств при эксплуатации не должны иметь трещин или других дефектов. Основными недостатками эмалевых покрытий являются чувствительность к механическим воздействиям и растрескивание при термических ударах. (Повреждения иногда поддаются зачеканиванию золотой или танталовой фольгой.)  [c.243]


Травление металлов, особенно при повышенной температуре и концентрации кислоты, сопровождается растравлением поверхности, потерей металла и кислоты, ухудшением механических свойств металла и качества его поверхности. Для повышения качества протравливания металла и для снижения потерь металла и кислоты применяются ингибиторы кислотной коррозии в сочетании с пенообразователями, что уменьшает загрязненность атмосферы. Применение ингибиторов особенно необходимо при интенсификации процесса травления металла за счет повышения температуры травильных растворов, а также при работе на НТА.  [c.61]

Как с очевидностью следует из проведенного обсуждения, методу пропитки свойственны некоторые трудноразрешимые проблемы. При изготовлении композита пропиткой чрезвычайно важно обеспечить смачивание волокон расплавом. Существенное повышение температуры заливки (например, значительно выше 7пл алюминия) или использование поверхностно-активных веществ может привести к неполному смачиванию в практически важных системах. Вследствие применения указанных приемов происходит недопустимое ухудшение механических свойств волокна, а значит, и всего композита. Покрытия, в частности вольфрамовые, облегчают смачивание, однако при такой толщине, которая приемлема для тонких волокон, они не обладают достаточной долговечностью в контакте с жидким металлом. Волокна большого диаметра (>0,25 мм) в прочных матрицах, которые представляются практически интересными, механически повреждаются (двойникова-нием или скольжением) при охлаждении от температуры пропитки.  [c.333]

Другим способом производства заготовок является ковка и штамповка. Поковки могут быть получены ковкой в подкладных штампах, штамповкой в закрепленных штампах и специальными методами. Значительная экономия металла при изготовлении некоторых деталей достигается при применении совмещенной штамповки и использовании отходов. Если от детали не требуется мелкозернистая структура, а механические свойства удовлетворяют требованиям независимо от температуры окончания штамповки, то заканчивать штамповку следует при повышенной температуре. Для деталей, например, из углеродистой стали эти требования позволяют повысить производительность труда на 10—15%, сократить машинное время на 25— 30%, повысить стойкость штампов и облегчить заполнение ручья.  [c.351]

Сортамент 258 ---из сплавов алюминиевых деформируемых — Механические свойства 18 — Механические свойства при различных температурах 54 — Механические свойства при растяжении при повышенных температурах 51 — Применения 74 --из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический состав 17  [c.298]

Механические свойства 181 --латунные — Механические свойства и применение 206, 207 — Механические свойства при повышенных температурах 209 — Размеры и отклонения допускаемые 209, 201 — Химический состав 201  [c.299]

Стали этого типа получили широкое применение в различных отраслях промышленности в качестве нержавеющего, коррозионностойкого и окалиностойкого материала. Сочетая умеренную прочность, высокую пластичность, немагнитность, повышенные механические свойства при высоких температурах, имея хорошую свариваемость, высокие прочность и пластичность в сварных соединениях, они в ряде отраслей промышленности являются основным, весьма ценным конструкционным материалом,  [c.22]


В промышленности также находят применение сплавы на основе карбида хрома [3] с никелевой связкой (10—40%). Эти сплавы не окисляются на воздухе до 1000° С, обладают высокой коррозионной устойчивостью в различных агрессивных средах, а также высокой эрозионной стойкостью и сопротивлением износу при комнатной и повышенных температурах, в несколько раз превышаюш,их стойкость нержавеющей стали. Ниже приведен пример высоких физических и механических свойств одного из подобных сплавов  [c.423]

Одним из важнейших критериев пригодности материала для применения его в элементах конструкции является способность сохранять в рабочих условиях необходимый уровень механических свойств. Поэтому явлениям этого класса в табл. 2 уделено первое место. Механические свойства сильно подвержены воздействию облучения, так как механизмы движения дислокаций весьма чувствительны к дефектам кристаллической решетки, В облученном кристалле движущимся дислокациям необходимо преодолевать, кроме обычного рельефа Пайерлса и сил взаимодействия с исходными дислокациями и другими несовершенствами структуры, еще целый спектр барьеров радиационного происхождения изолированные точечные дефекты и их скопления, кластеры и дислокационные петли вакансионного и межузельного типов, пары, выделения, возникающие в результате ядерных превращений. Облучение, как правило, вызывает повышение пределов текучести и прочности, ускоряет ползучесть материалов, снижает ресурс пластичности, повышает критическую температуру перехода хрупко-вязкого разрушения.  [c.11]

Сплавы бериллия с медью — берил-лиевые бронзы обладают весьма высокими механическими свойствами при повышенных температурах, а также устойчивостью по отношению к окислению. Бериллий широко используется при изготовлении рентгеновских трубок, а также как источник нейтронов. Находит применение в реакторостроении как замедлитель быстрых нейтронов.  [c.372]

Сплавы золота с никелем получили широкое применение в ракетостроении для пайки изделий, работающих при повышенных температурах, там где требуются от паяных соединений высокие физические, механические и жаропрочные свойства.  [c.79]

Правила [9] обусловливают применение материалов в пределах температур, указанных в табл. 1.5. В отдельных случаях допускается применение материалов для работы при повышенных параметрах, а также новых материалов на основании совместного согласованного с Горгортехнадзором СССР решения проектной и материаловедческой организаций, завода-изготовителя конструкции (монтажной или ремонтной организации). В этих случаях должны быть представлены данные о физических, коррозионных и технологических свойствах (включая свариваемость и режимы термообработки), а также необходимые данные о механических свойствах при температуре 20° С и рабочих температу-  [c.22]

Полиамиды получают путем поликонденсации диаминов с дикарбоновыми кислотами (например, гексаметилендиамина с адипиновой кислотой) или поликонденсацией аминокислот (например, аминокапроновой кислоты), а также полимеризацией лак-тамов (например, 8-капролактама). Практическое значение имеют полиамиды с молекулярной массой выше 20 ООО. Полиамиды имеют высокую температуру плавления (196—265 С). Для них характерны удовлетворительные механические свойства, повышенные упруго-пластические характеристики (в частности, высокая удельная ударная вязкость) и низкий коэффициент трения (табл. 58 и 59). Благодаря этим качествам полиамиды нашли широкое применение как конструкционный материал для изготовления подшипников, втулок, шестерен, седел клапанов, эксцентриков.  [c.111]

Монокристаллические отливки получают как из традиционных, так и специально разработанных для данного процесса сплавов. При создании новых сплавов для монокристаллического литья нет необходимости вводить в них элементы, упрочняющие границы зерен (С, В, Hf, Zr, РЗМ), поскольку не существует большеугловых границ. Поэтому в безуглеродистых сплавах отсутствуют карбиды и остаются только у- и у -фазы. Дальнейшее повышение стабильности сплава (т. е. повышение температур солидуса и полного растворения у -фазы) может быть достигнуто оптимальным его легированием тугоплавкими металлами (W, Та, Re, Мо) и у -стабилизаторами (Ti, Та). Это приводит к существенному торможению контролируемых диффузией высокотемпературных процессов, в том числе коагуляции у -фазы. Важная роль при легировании уделяется рению (до 3%), в основном располагающемуся в у-твердом растворе. Содержащие рений сплавы (например, ЖС36) отличаются более узким интервалом кристаллизации. Так, температуры ликвидуса, солидуса и полного растворения у -фазы в сплаве ЖС36 равны соответственно 1409, 1337 и 1295 °С. Снижение содержания хрома (а следовательно, и жаростойкости) компенсируют добавками Hf и Y, образующими на поверхности плотные жаростойкие оксидные пленки. В связи с применением направленной кристаллизации значительно расширились возможности использования экономно легированных жаропрочных сплавов на основе интерметаллида №зА1. Так, например, установлено, что отливки из этих сплавов с монокристаллической структурой и кристаллографической ориентацией [111] обладают оптимальным сочетанием физико-механических свойств при температурах до 1200 °С высокими показателями жаропрочности, термоусталостной прочности и жаростойкости.  [c.367]


В большинстве случаев высокохромистые мартенситные стали имеют повышенное содержание углерода, некоторые из них дополнительно легированы никелем (табл. 8.1). Углерод, никель и другие аустенитообра-зующие элементы расширяют область у и способствуют практически полному у а (М) превращению в процессе охлаждения. Применение для закаленной стали отжига при температурах ниже точки Асз способствует отпуску структур закалки и возможности получения одновременно высоких значений прочности, пластичности и ударной вязкости. Ферритообразующие элементы (Мо, W, V, Nb) вводят для повышения жаропрочности сталей. Если обычные 12 %-ные хромистые стали имеют достаточно высокие механические свойства при температурах до 500 °С, то сложнолегированные на этой основе стали обладают высокими характеристиками до 650 °С и используются для изготовления рабочих и направляющих лопаток, дисков паровых турбин и газотурбинных установок различного назначения.  [c.330]

По некоторым свойствам молибден превосходит многие металлы и сплавы. Применение молибдена ограничено вследствие его низкого сопротивления окислению при повышенных температурах и недостаточной пластичности сварных швов. Молибден значительно окисляется при температурах выше 500° С, а образующаяся на нем при этом окисная пленка МоОз летуча. Механические свойства MOjiHOneHa сильно снижаются с повышением температуры.  [c.292]

Полиэтилен низкого давления, ио сравнению с полиэтиленом высокого давления, об.тадает более высокими прочностными показателями и более высокой химической стойкостью. По этим причинам полиэтилен НД находит большее применение в химическом машиностроении. Физико-механические свойства полиэтилена марок НД и ВД приведены в табл. 48. С повышением температуры прочностные показатели полиэтилена, в особенности предел прочности ири разрыве, снижаются (рис. 248).  [c.420]

В твердых диэлектриках повышенная температура вызывает соответствующие изменения электрических параметров и снижение ряда механических. Кроме того, повышенная температура размягчает большинство твердых диэлектриков и даже может их расплавить. Низкая температура плавления некоторых материалов лимитирует даже область их применения, например у стандартного парафина разных марок температура плавления лежит в пределах 49—54° С. Органические и элементоорганические соединения при воздействии высокой температуры подвергаются термоокислительной деструкции, которая приводит к необратимому изменению их свойств и тепловому старению. К числу тепловых воздействий относится и терм о-удар — резкое изменение температуры. Многие твердые диэлектрики плохо переносят резкие температурные колебания, которые вызывают растрескивание. Очень низкие температуры не орасны с точки зрения непосредственного воздействия на электрические параметры, но ведут к появлению трещин и могут вызывать хрупкость твердой изоляции, которая по условиям использования должна оставаться гибкой. Например, применяемая для многих марок проводов резиновая изоляция в области достаточно низких температур становится хрупкой, ломкой. Жидкие диэлектрики при понижении температуры повышают свою вязкость, а при достаточно низких температурах совсем застывают и теряют текучесть.  [c.108]

По электрическим свойствам мусковит является одним из лучших электроизоляционных материалов и превосходит в этом отношении флогопит. Кроме того, он более прочен механически, более тверд, гибок и упруг, чем флогопит. При нагревании слюды до некоторой температуры из нее начинает выделяться входящая в ее состав вода. При этом в результате вспучивания слюда теряет прозрачность, толщина ее увеличивается, механические свойства и электрические характеристики ухудшаются. Для различных слюд температура обезвоживания колеблется в весьма широких пределах у мусковитов она обычно не менее 200 °С, у флогопитов — не менее 800 °С. Некоторые разновидности флогопита имеют более низкие температуры обезвоживания (150—250 °С), что связано с повышенным содержанием воды. Такие слюды находят применение трдько для малоответственных целей.  [c.232]

Прочностные характеристики в условиях кристаллизации под давлением особенно возрастают у поршней из эвтектических сплавов и менее заметно нз заэвтекти-ческих. Это связано с тем, что механические свойства последних в значительной степени зависят от формы и размеров первичных кристаллов кремния, которые даже при высоких скоростях кристаллизации вырастают до заметной величины. Несмотря на это, поршни, изготовленные с применением давлений, имеют более высокие значения (на 20—40%) механических свойств при нормальной и повышенной температурах [82] по данным работы [72], прочностные характеристики поршней из сплава АЛ10В увеличиваются в 1,3—1,6 раза по сравнению с литьем в кокиль.  [c.122]

Характеристики механических свойств при повышенных температурах в случаях применения кратковременных испытаний после предварительных длительных О 1000 час) нагревов, а также длительных исп1.1таний приведены для отдельных сплавов в разделе Краткие характеристики  [c.67]

ТропикостойНость и тропическая защита радиоматериалов. Тро-пикостойкостью называется свойство материала или изделия выдерживать воздействие тропических условий интенсивного солнечного облучения, высокой или очень малой влажности, повышенной температуры, грибковой плесени и др. микроорганизмов, насекомых (главным образом термиты), грызунов, морской воды и других факторов, без недопустимого ухудшения практически важных свойств. Сильное воздействие на материалы в тропическом влажном климате оказывает влага, проникновение и постоянное присутствие которой при повышенной температуре резко снижает электрические, механические и физикохимические свойства. Защитой от влаги служит применение влагостойких материалов, гидрофобизация, т. е. пропитка и покрытия водо-  [c.41]

Пластические массы (текстолит, гетинакс, стеклотекстолит, древесно-волокнистые пластики, волокнит, винипласт, оргстекло, полиэтилен, пенопласт, эпоксидная смола и многие другие) используются в качестве отделоч1Ных материалов и для различных изделий (трубы, краны, соединительные части, детали интерьеров, машин и конструкций и т. д.). Они получают все более широкое применение 1в машиностроении, строительстве, энергетике и многих других отраслях техники, что делает необходимым изучение основных механических свойств пластмасс и методов определения их главных механических характеристик. Следует иметь в виду, что некоторые механические свойства пластмасс весьм.з сильно изменяются (ухудшаются) под влиянием повышенной температуры, длительных нагрузок, влажности, циклических напряжений и времени. Эти изменения, как правило, необратимы. Для  [c.157]

Сочетание простой технологии получения (метод переосажде-ния), удовлетворительных механических показателей и высоких электроизоляционных свойств делает перспективным применение при повышенных температурах органосиликатных пресс-композиций в качестве материалов электроконструкционного назначения.  [c.17]

Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]


В доменном производстве на базе улучшения подготовки железорудной шихты за счет повышения содержания железа, улучшения гранулометрического состава, физико-механических свойств и ооновпости подготовленной шихты, а также дальнейшего повышения температуры дутья и давления газов под колошник,ом, значительного расширения масштабов применения природного газа и кислорода показатели возможного использования доменного газа будут постепенно уменьшаться за счет снижения расхода кокса в процессе плавки.  [c.251]

Чугунные элементы обладают такими положительными свойствами, как дешевизна, легкость отливки, хорошая акку.муляция тепла на поверхностях трения, меньшее расширение при нагреве и, следовательно, меньшие искажения геометрических размеров, высокая температура. плавления, излучательная способность и износостойкость самого чугуна и меньшее изнашивание фрикционного материала. В некоторых отраслях машиностроения применение чугунных элементов было ограничено опасностью разрыва его центробежными силами. Однако в связи с успехами, достигнутыми в металлургии чугуна в отношении повышения его механических свойств, а также в связи с развитием средств дефектоскопии чугун в настоящее время приобретает все большее распространение, постепенно вытесняя сталь. Чем выше теплоемкость металлического элемента, тем лучше тепло аккумулируется в нем и быстрее рассеивается в окружающей среде. Поэтому было бы желательно делать металлические элементы из сплавов меди, алюминия и магния, обладающих большей теплоемкостью. Но эти сплавы по своей механической прочности и низкой износоустойчивости не могут служить металлическим элементом. Поэтому в последнее время  [c.571]

Благодаря хорошему сочетанию высоких механических свойств, хорошей свариваемости и обрабатываемости резанием сплав АЛ19 нашел широкое применение в различных отраслях промышленности для изготовления деталей, работающих в условиях повышенных статических и ударных нагрузок, а также для изготовления силовых деталей, работающих при температурах до 300 С. Учитывая, что в литом состоянии сплав АЛ19 имеет несколько эвтектик, рекомендуется два режима нагрева под закалку (в обоих случаях протекают два противоположных процесса распад твердого раствора марганца в алюминии и растворение меди в твердом алюминии)  [c.88]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

При применении задвижек, особенно клиновых, для повышенных температур от материала уплотнительных колец требуется, чтобы он не изменял своих механических свойств и не задирал при трении поверхностей клина и корпуса. Рекомендуются термически обработанные кольца из нержавеющей стали марки 3X13. Твёрдость таких колец Л/д = = 300-350.  [c.797]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

В последние десятилетия в СССР и за рубежом для создания различных металлоконструкций все большее применение находят низколегированные стали повышенной и высокой прочности, которые являются наиболее эффективным средством значительного снижения веса конструкций, их стоимости и расхода стали. Металлургическими заводами совместно с Институтом электросварки им. Е. О. Патона АН УССР, ИркутскимНИИхиммашем, ПО Уралхиммаш разработана и освоена выплавка, прокат и термообработка теплоустойчивой низколегированной рулонной стали 12ХГНМ повышенной прочности для сосудов высокого давления химической и нефтехимической промышленности. Положительные результаты исследования механических свойств рулонной стали в области рабочих температур послужили основанием для проектирования сварного многослойного корпуса установки реактора гидрокрекинга нефти производительностью 1 млн. т продукта в год.  [c.119]

Появление треш,ин около отверстий отмечалось также на ряде барабанов парогенераторов, изготовленных и эксплуатируемых в ФРГ. Чаще были подвержены треш,и-нообразованию барабаны, изготовленные из высокопрочных сталей, которые имеют при рабочей температуре предел текучести выше 352,8 МПа (36 кгс/мм ). Повышение статической прочности, по которой определяются допускаемые напряжения, не сопровождается соот-ветствуюш,им увеличением сопротивления малоцикловой усталости. Поэтому применение сталей с более высокими механическими свойствами, чем у стали 16ГНМ, нецелесообразно.  [c.79]

Изготовление манжет и уплотнительных колец из полихлорвинило-вого пластиката. Полихлорвиниловый пластикат получают с химических заводов в виде порошка серовато-белого цвета. Изменение цвета достигается применением красителей, не влияющих на механические свойства пластиката. Манжеты, изготовленные из обычного поли-хлорвинилового пластиката, работают удолетворительно в пределах температур от О до 60°. Для повышения теплостойкости манжет до 90° в порошок пластиката добавляют 10—25% основной углекислой соли свинца, а для повышения износоустойчивости — до 5% графита.  [c.102]


Смотреть страницы где упоминается термин 18 — Механические свойства при при повышенных температурах 51 Применения : [c.257]    [c.288]    [c.227]    [c.292]    [c.297]    [c.299]    [c.303]    [c.23]    [c.276]    [c.155]    [c.176]    [c.39]    [c.49]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.74 ]



ПОИСК



59-1-Механические Применение

Механические Механические свойства при повышенных температурах

Механические свойства при температуре

Температура повышенная

см Механические свойства при повышенных температурах



© 2025 Mash-xxl.info Реклама на сайте