Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение внутреннее — Определени

Статические и динамические испытания материалов с покрытиями включают испытания на растяжение при комнатной и высокой температурах, оценку внутреннего трения, микропластической деформации, определение твердости. Наша цель — показать наиболее существенные особенности проведения этих испытаний на образцах с покрытием в сравнении с достаточно известными исследованиями обычных металлических образцов.  [c.20]

Форма и размеры образцов. Наиболее рациональным по простоте изготовления, уменьшению потребной мощности на колебания и уменьшению нагрева образца теплом внутреннего трения, упрощению методики определения уровня задаваемых напряжений и резонансных длин является консольный образец круглого сечения (рис. 5.4, а, б).  [c.176]


Трение внутреннее — Определение 131—135  [c.559]

Внутреннее трение исследуется путем определения резонансной кривой в вынужденных колебаниях или путем определения затухания свободных колебаний по логарифмическому декременту (или по декременту), представляющему собой натуральный логарифм  [c.65]

На основании этих работ можно отметить определенную закономерность в изменении внутреннего трения при напряжениях выше предела усталости в зависимости от числа циклов нагружения вначале наблюдается некоторое повышение внутреннего трения, затем, после определенного числа циклов, наступает период стабилизации и незадолго до усталостного разрушения металла начинается резкое возрастание логарифмического декремента колебаний, связанное с появлением в металле грубых повреждений в виде микроскопических трещин усталости.  [c.107]

В качестве дополнительных методов контроля, а также в исследованиях применяют различные физические методы определения межкристаллитной коррозии токовихревой, ультразвуковой, цветной, внутреннего трения и др.  [c.454]

К числу физических методов определения склонности легированных сталей к межкристаллитной коррозии, разработанных в последние годы, следует отнести метод оценки разрушения металла по изменению внутреннего трения. Разработанный М. А. Веденеевой и Н. Д. Томашовым метод основан на том явлении, что при разрушении границ зерен, нарушающих связь между кристаллитами, изменяются упругие характеристи-  [c.346]

Искомое натяжение нити является в рассматриваемой системе силой внутренней. Для ее определения расчленяем систему и применяем принцип Даламбера к одному из грузов, например j[c.349]

Простым примером расчета допускаемой погрешности на основе эксплуатационных требований является определение допускаемого отклонения угла конуса а в неподвижных конических соединениях. Основное эксплуатационное требование для них —больший момент трения Mjp в соединении (для конусов шпинделей точных станков, разверток, хвостовых долбяков и других соединений) необходимо учитывать также требования к точности центрирования осей соединяемых деталей). При заданных размерах конусных /деталей и осевой силе момент зависит от точности совпадения углов наружного и внутреннего конусов и отклонений от их правильной формы.  [c.19]

При определении КПД зубчатого механизма (рис. 26.8) необходимо учесть потерн мощности в опорах, зубчатом зацеплении и на перемешивание смазочного материала. КПД опор определяется по форму-ла.м для вращательных кинематических пар. Мгновенные потери мощности в кинематической паре В, если пренебречь потерями на трение качения и учесть только потери на трение скольжения, определятся из выражения (26.18) (знак — —для внутреннего зацепления)  [c.329]

Рассмотрим задачу определения внутренних усилий, возникающих в стержне произвольного сечения, который движется внутри неподвижного канала (рис. 2.12,а ), геометрия осевой линии которого известна (известны компоненты вектора х). До входа в канал стержень имеет прямолинейную форму. Можно принять, что распределенные силы трения между стержнем и внутренней поверхностью канала направлены по касательной к осевой линии стержня, т. е.  [c.46]


Это свойство не означает отсутствия сопротивления сдвигу в среде. Несмотря на текучесть, газы сопротивляются сдвигающим усилиям. Сопротивление проявляется в том, что данной силой можно обусловить только определенную скорость деформации и для ее увеличения нужно увеличить силу. Свойство среды сопротивляться сдвигающим усилиям называют вязкостью или внутренним трением. В газах вязкость обусловлена хаотическим движением молекул. Так, при относительном смещении слоев газа со скоростями ии и + Аи (рис. 2) благодаря тепловому движению молекул происходит их перемещение из слоя в слой и соответствующий перенос количества движения. Это приводит к выравниванию скоростей слоев, обусловленному появлением силы Тц, препятствующей их относительному сдвигу.  [c.9]

Задача определения течения жидкости в смазочном слое впервые была поставлена русским ученым Н. П. Петровым. В 1883 г. он опубликовал работу, в которой высказал важное предположение о том. Что в трении подшипника основную роль играет внутреннее трение в смазочном слое. В этой же работе было дано первое теоретическое решение поставленной задачи для простейшего, случая, когда нагрузка очень мала и цапфу и подшипник можно рассматривать как соосные цилиндры.  [c.256]

Из ЭТИХ формул следует, что движение центра масс зависит только от внешних сил, внутренними же силами изменить положение центра масс нельзя. Так, при отсутствии сил трения автомобиль не мог бы двигаться по горизонтальной дороге, потому что силы давления в цилиндрах двигателя являются внутренними и не влияют на движение центра масс, при отсутствии же сил трения между колесами и дорогой внешние силы — вес автомобиля и реакция дороги — вертикальны и сумма их проекций на горизонтальную ось равна нулю. Поэтому вначале неподвижный автомобиль будет буксовать па месте, а двигавшийся с определенной скоростью будет продолжать равномерное прямолинейное движение, что и встречается на практике, когда машина застревает в грязи или теряет управление, попадая на скользкий участок дороги. Движение автомобиля происходит за счет сил трения между его ведущими колесами и дорогой это силы препятствуют пробуксовыванию колес и толкают машину вперед.  [c.184]

Вязкость жидкостей. Вязкостью называется свойство жидкостей оказывать сопротивление сдвигу. Все реальные жидкости обладают определенной вязкостью, которая проявляется в виде внутреннего трения при относительном перемещении смежных частиц жидкости. Наряду с легкоподвижными жидкостями (например, водой, воздухом) существуют очень вязкие жидкости, сопротивление которых сдвигу весьма значительно (глицерин, тяжелые масла и др.). Таким образом, вязкость характеризует степень текучести жидкости или подвижности ее частиц.  [c.15]

После силового расчета механизма при идеальных условиях можно перейти к определению потерь на трение в подшипниках и зацеплениях. Для этой цели необходимо знать величины радиусов внутренних поверхностей подшипников. Обозначим радиус подшипников первого вала чере> Гщ, второго через г 2 и третьего  [c.104]

Динамика машин является разделом общей теории механизмов и машин, в котором движение механизмов и машин изучается с учетом действующих сил и свойств материалов, из которых изготовлены звенья-упругости, внешнего и внутреннего трения и др. Важнейшими задачами динамики машин являются задачи определения функций движения звеньев машин с учетом сил и пар сил инерции звеньев, упругости их материалов, сопротивления среды движению звеньев, уравновешивания сил инерции, обеспечения устойчивости движения, регулирования хода машин. Как и в других разделах теории машин, в динамике можно выделить два класса задач — анализ и синтез механизмов и машин по динамическим критериям. Весьма существенные критерии эффективности и работоспособности машин — их энергоемкость и коэффициент полезного действия также изучаются в разделе Динамика машин .  [c.77]

Способ точного определения величин X для обогреваемых труб дан в [Л. 20] и курсах гидравлики. Для расчетов удобней пользоваться приведенным к диаметру коэффициентом трения 1о=Я/й вн, который связан и с величиной шероховатости труб. Значения приведенного коэффициента даны в табл. 4-1 для наиболее распространенных внутренних диаметров труб. В этой же таблице приведены и коэффициенты 170  [c.170]

Чем больше силы трения в реальной жидкости, тем больше, при равных прочих условиях, потери напора hj-. Между силами трения и потерями напора hf (т. е. работой сил трения) существует, естественно, определенная зависимость. Зная распределение в потоке напряжений х, а также скоростей и (дающих нам величину перемещений частиц жидкости), мы могли бы подсчитать работу сил трения и тем самым определить потери напора. Однако такая задача является весьма трудной, в частности, в связи с тем, что поле скоростей и нам часто бывает неизвестным. Здесь приходится идти особыми приближенными путями, освещаемыми ниже. При этом, рассматривая вначале простейший случай движения жидкости — установившееся равномерное движение (местные потери отсутствуют) — мы пользуемся особым уравнением, которое дает связь только между силами трения и потерями напора. Это достаточно точное уравнение принято называть основным уравнением установившегося равномерного движения жидкости (см. 4-2). На основании этого уравнения, а также на основании законов Ньютона о силах внутреннего трения (см. 4-3), мы далее и устанавливаем необходимую нам зависимость, связывающую потери напора и скорости движения жидкости. Этот вопрос достаточно хорошо решается теоретически для простейших случаев ламинарного движения (см. 4-4 и 4-5). В случае турбулентного режима приходится прибегать к использованию некоторых экспериментальных коэффищ1ентов, вводимых в теоретический анализ.  [c.130]


Наиболее трудной и одновременно основной частью проблемы оценки маслянистости является выбор и замер индикаторов положительного действия смазки в условиях граничного трения. С этим выбором по существу связано и придание того или иного конкретного содержания понятию маслянистости. Наиболее старое определение маслянистости, например, в формулировке Гершеля, выбирает в качестве индикатора положительного действия смазки коэффициент трения. Поскольку всякое лишенное внутренних противоречий определение нового понятия законно, спор может итти только о практической целесообразности, т. е. в данном случае решающим является  [c.78]

Экспериментальное введение поправки Рэлея целесообразно лишь для металлов и притом в диапазоне частот, характеризующихся небольшим внутренним трением, и требует определения частот не только первой формы колебаний, но и более высоких порядков. Определение собственных частот колебаний разных форм е одного установа образца позволяет изменять соотношение длины волны и диаметра образца. Далее экстраполяцией зависимости 1р/р -сп р к нулевому значению можно определять собственную частоту колебаний с учетом поправки Рэлея. Для большей точности эксперимента необходимо измерять возможно большее число форм колебаний, проверяя при этом зависимость (/"г /р/ ) от ( /Я) 2, где — частота свободных колебаний стержня, полученная экстраполяцией зависимости flp/p от к р=0. Возможность экспериментального введения поправки Рэлея ограничена линейным участком этой зависимости.  [c.208]

Ламинарное движение. С примером ламинарного (слоистого) движения вязкой жидкости мы познакомились при выводе формулы Пуазейля. К ламинарному виду относится установившееся (стационарное) течение идеальной жидкости. Однако в идеальной жидкости между движущимися слоями не возникают силы внутреннего трения. Поэтому ламинарное течение остается таковым при любых скоростях. Силы внутреннего трения, возни-каюш ие между слоями реальной (вязкой) жидкости, оказывают существенное влияние на характер движения. Если эти силы невелики и средняя (по сечению трубки) скорость течения мала то движение является ламинарным. При этом скорость слоев изменяется от оси трубки к стенкам по параболическому закону (рис. 10.22). Если же силы внутреннего трения достигают некоторой определенной величины, то их воздействие на слои жидкости настолько велико, что это приводит к нарушению слоистости течения и возникновению перемешивания. Механизм перехода от ламинарного к турбулентному движению мы разберем несколько ниже.  [c.292]

Коэффициент внутреннего трения истинного течения, определенный исходя из соотношения (2) по конечным линейным участкам опытных кривых, равен в среднем по четырем образцам (таблица 4) 4,9- 10 кГ -сек1см при частных отклонениях порядка 10%. Время релаксации, определенное по кривой образца Я 5 (рис. 12), оказалось равным 1,5 суток. Находим коэффициент внутреннего трения конфигурационного деформирования  [c.46]

Данные о величине энергии активации для первого и второго максимумов кривых внутреннего трения литиевосиликатных стекол, определенные различными авторами, приведены в табл. 32. Из данных табл. 32 видно, что значения энергии активации меняются в широких пределах, причем одни исследователи нашли зависимость энергии активации от концентрации окиси лития в стекле, другие такой зависимости не обнаружили для случая, когда содержание Ь1зО меняется в пределах от 10 до 33 мол.%.  [c.121]

Следует, однако, отметить, что необходимо с величайшей осторожностью прилагать величины физических постоянных, определенные для воздуха в лабораторных условиях, к явлениям, происходящим в обстановке атмосферной действительности. Как показали исследования Хессель берга, коэффициент внутреннего трения воздуха т], определенный путем изучения атмосферных движений (т]атм), в 5 10 раз больше того же коэффициента, определенного путем лабораторных исследований (т1лаб) -  [c.111]

По мере увеличения длительности действия циклической нагрузки в металле образуются скопления дислокаций критической плотности [40]. Обоазование скоплений дислокаций в данных условиях представляется вполне вероятным, учитывая очень малые локальные объемы, в которых развиваются указанные выше структурные процессы. В исследуемом случае такими рабочими объемами являются весьма мелкие пластинки феррита (толщина их не превышает 1 мк), чередующиеся с жесткими пластинками цементита. В пределах столь малых объемов локализуются процессы, связанные с порождением, движением и взаимодействием дислокаций и других дефектов в результате, уже при сравнительно невысокой средней плотности дислокаций (отнесенной ко всему объему металла) в микрообъемах пластичной составляющей — в феррите — скопление дислокаций достигнет критической плотности. Вследствие уменьшения подвижности дислокационных сегментов в таких скоплениях, а также в результате взаимной блокировки полями упругих напряжений самих дислокационных скоплений фон внутреннего трения должен с определенного момента циклического нагружения начать уменьшаться, что и наблюдается на опыте после пропуска 300 млн. т груза (см. рис. 77). Следовательно, стадия вторичного снижения внутреннего трения свидетельствует о непрерывном возрастании числа таких скоплений.  [c.109]

Рассмотрим использованный выше в порядке первого приближения прием расчленения общего коэффициента сопротивления на слагаемые. Оценка только по об дает лишь количественный результат, поскольку этот коэффициент является интегральным. Поэтому стремление дифференцировать сложный шроцеюс привело к коэффициентам I, п, которые, однако, в определенной мере условны. Сложность заключается (В том, что все составляющие 1об не являются независимыми друг от друга величинами. Действительно, сопротивление трения чистого газа будет при наличии частиц и прочих равных условиях иным, чем при их отсутствии в связи с изменением обстановки в пристенном слое. По этой же причине т может иметь место и в тех случаях, когда движение твердых частиц не приводит к их сухому трению и ударам о стенки (Фт О), а лишь вызовет внутренние силы межкомпонентных взаимодействий. Вот почему при выбранном методе расчленения об коэффициент т(Арт) учитывает все (за исключением Ара) дополнительные потери давления, которые появляются из-за наличия частиц в потоке. Оценка общего коэффициента сопротивления дисперсного потока по зависимости типа об=ф1 [Л. 283] пригодна лишь для горизонтальных потоков, где п=0. Согласно (Л. 283] <р= 1 +1,6р 10иви +(1+2р)]. Нетрудно показать, что такая обработка опытных данных приводит в итоге также к расчленению об на составляющие. Действительно,  [c.125]

Коэффициент трения на опорной поверхности гайки = 0,18 коэффициент трения в резьбе / = 0,15. При определении момента сил трения на опорной полерхностп гайк71 рассматривать ее как кольцо с внутренним диаметром, равным диаметру отверстия под болт (4 = и мм для болта Ml О и = 31 мм для болта МЗО), и наружным, равным размеру гайки под ключ . Допустимы ли полученные напряжения, если материал болтов — сталь Ст.З  [c.66]

Определение внутреннего трения осуществляется путем из-мерешгя амплитуды колебаний при резонансных частотах и близких к ним. Все измерения производят при одном и том же значении максимальной амплитуды, например 3 мм. На основании полученных данных строят резонансную кривую (зависимость амплитуды колебаний образца А от частоты колебаний о), из которой определяют соответствующую максимальной амплитуде колебаний резонансную частоту колебаний ыр и рассчитывают внутреннее трение по уравнению (43).  [c.347]


Фултона [18], Шспера [19] и Ван-Демтсра [20] ). Строгое теоретическое рассмотрение сложного турбулентного течения газа, которое имеет место в вихревой трубе, является чрезвычайно трудной задачей, особенно в связи с тем, что профиль скоростей потока внутри трубы экспериментально пока еще не определен. Однако качественно эффект охлаждения можно объяснить следую-п им образом. Вращающийся поток воздуха внутри трубы создает в радиальном направлении градиент давления, возрастающий от оси к стенке трубы. Влияние турбулентности на такое ноле давлений выражается в адиабатическом перемешивании. Это приводит к созданию адиабатического распределения температур, при котором более холодный газ оказывается в области, расположенной вблизи оси трубы. Однако вследствие теплопроводности, приводящей к уменьшению градиента температур в радиальном направлении а также непостоянства значений угловой скорости в разных местах трубы адиабатическое распределение полностью осуществлено быть не может. Ван-Демтор описывает последний эффект следующим образом Если угловая скорость непостоянна, то вступает п действие другой механизм, приводящий к возникновению потока механической энергии в радиальном направлении наружу. Вследствие турбулентного трения (вихревой вязкости) внутренние слои жидкости или газа стремятся заставить внешние слои двигаться с той  [c.13]

Элемент работает следующим образом. После завихрителя закрученный поток газа попадает в патрубок центробежного элемента. За счет образования в центре патрубка зоны разрежения туда подсасывается жидкость, и она попадает на наружную поверхность вытеснителя, с кромок которого за счет действия центробежных сил капли определенного диаметра срываются и отбрасываются на внутреннюю стенку патрубка, на которой образуется вращающаяся пленка жидкости, движущаяся за счет трения газа о ее поверхность в направлении канала между пленкосъемником и наружной стенкой патрубка. Частицы меньшего диаметра за счет сил, образованных разностью давлений на оси и кромках вытеснителя, заполняют чашу последнего. Там частицы укрупняются, образуя жидкость. При переполнении вытеснителя крупные частицы отбрасываются к стенке, т.е. происходит рециркуляция жидкости во внутренней полости вытеснителя. Массообмен между газом и жидкостью осуществляется на поверхности капли жидкости и на поверхности жидкостной пленки. Для увеличения поверхности контакта используют принцип рециркуляции жидкости, в результате которого часть отсепарированной жидкости обратно засасывается в элемент, что приводит к увеличению количества капель, а, следовательно, поверхности контакта и кпд тарелки. При этом возрастает общий расход жидкости, поступающей на контактную тарелку (и в элемент), и отбираемой с нее. Рециркуляцию жидкости используют обычно в процессах с малым массовым соотношением жидкости и газа ( 0,01), коэффициент рециркуляции при этом дает положительный эффект при его значениях не более 5-6. Дальнейшее его увеличение уже мало влияет на повышение кпд тарелки из-за возрастания капельного уноса, вызванного значительным ростом расхода жидкости.  [c.275]

Из определения понятий теп юты и работы (см. 5) следует, что две рассматриваемые в термодинамике формы передачи энергии не являются равноценными в то время как работа W може непосредственно пойти на увеличение любого вида энергии, теплота Q непосредственно, без предварительного превращения в работу, приводит лишь к увеличению внутренней энергии системы. Эта неравноценность теплоты и работы не имела бы значения, если бы можно было без каких-либо трудностей превратить теплоту в работу. Однако, как показывает опыт, в то время как при превращении работы в теплоту явление может ограничиться изменением термодинамического состояния одного лишь теплополучающего тела (например, при нагревании посредством трения или при электронагреве), при преобразовании теплоты в работу наряду с охлаждением теплоотдающего тела происходит изменение термодинамического состояния других тел, участвующих в этом процессе или рабочего тела при незамкнутом процессе, или других тел в замкнутом круговом процессе, когда этим телам рабочее тело непременно отдает часть полученной им от нагревателя теплоты. В качестве таких других тел в тепловых машинах обычно служат холодильники.  [c.50]

Уравнение (2.51) было выведено ранее для обратимых процессов. В действительности оно может быть распространено и на некоторые необратимые процессы, например, на процессы, происходящие не бесконечно медленно, но с некоторой конечной скоростью, если только учитывать диссипацию энергии движения, т. е. изменение энтропии при изменении состояния системы в результате действия сил внутреннего трения, теплопроводности и диффузии (подробнее об >том см. гл. 10). Е1следствие этого, и при условии, что и, 1, 8, Т, А/, йу имеют вполне определенные значения при рассматриваемых необратимых процессах, термодинамическое тождество (2.73) может применяться и к необратимым процессам, если только степень необратимости их не очень велика (при этом давление р надо заменить на р ).  [c.73]

Основополагающим трудом по гидравлике считают сочинение Архимеда О плавающих телах , написанное за 250 лет до нашей эры и содержащее его известный закон о равновесии тела, погруженного в жидкость. В конце XV в. Леонардо да Винчи написал труд О движении воды в речных сооружениях , где сформулировал понятие сопротивления движению твердых тел в жидкостях, рассмотрел структуру потока и равновесие жидкостей в сообщающихся сосудах. В 1586 г. С. Стевин опубликовал книгу Начало гидростатики , где впервые дал определение силы давления жидкости на дно и стенки сосудов. В 1612 г. Галилей создал трактат Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся , в котором описал условия плавания тел, В 1641 г. его ученик Э. Торричелли вывел закономерности истечения жидкости из отверстий. В 1661 г. Б. Паскаль сформулировал закон изменения давления в жидкостях, а в 1687 г. И. Ньютоном были установлены основные закономерности внутреннего трения в жидкости. Эти ранние работы были посвящены отдельным вопросам гидравлики и только в XVIII в. трудами членов Российской Академии наук М. В. Ломоносова, Д. Бернулли, Л. Эйлера гидравлика сформировалась, как самостоятельная наука.  [c.7]

В конце XV в. Леонардо да Винчи (1452—1519 гг.) написал труд О движении воды в речных сооружениях . В 1586 г. Симон Стевин (1548—1620 гг.) опубликовал книгу Начала гидростатики , в которой дал правила определения силы давления на дно и стенки сосудов. В 1612 г. появился трактат Галилея (1564—1642 гг.) Рассуждение о телах, пребывающих в воде, и о тех, которые в ней движутся . В 1643 г. ученик Галилея Торричелли (1608—1647 гг.) впервые исследовал движение жидкости и установил закон вытекания жидкости через отверстия в сосуде. В 1650 г. французский ученый Блез Паскаль (1623—1662 гг.) опубликовал закон о передаче внешнего давления в жидкости (известный закон Паскаля). В 1687 г. гениальный английский ученый Исаак Ньютон (1643—1727 гг.) сформулировал законы внутреннего трения в движущейся жидкости.  [c.4]

Трение в жидкости иройвлйется только при ее движеиии. Под влиянием сил трения в потоке формируется определенный профиль скорости, видом которого и определяется работа сил трения. Расчеты показывают, что составляющая отрицательна. Работа этого вида связана с распространением внутрь потока тормозящего действия неподвижной стенки, например, внутренней поверхности воздуховода. В отличие от этого составляющаявсегда положительна, она представляет собой остаток полной работы сил трения который не расходуется на передачу внутрь  [c.171]

Центробежные муфты используют для автоматического соединения и разъе.тинения валов при достижении определенной частоты вращения. Они представляют собой сцепные фрикционные муфты (колодочные, дисковые и др.), в которых нормальное усилие создается центробежными силами. На рис. 25.16, а показана центробежная фрикционная четырехколодочная муфта, встроенная в шкив 1 плоскоременной передачи. Радиально перемещающиеся колодки 2 с.монти-рованы на направляющем кресте 3. В неподвижной муфте положение колодок в кресте фиксируется с по.мощью плоских пружин 4 и винтов 5. При некоторых частотах вращения, составляющих 70 — 80% от максимальных, колодки 2 под действием сил инерции, преодолевая усилия пружин 4, вплотную подойдут к внутренней поверхности шкива. Но вращающий момент при этом передаваться не будет. При последующем увеличении частоты вращения колодки прижмутся к шкиву и за счет сил трения последний начнет передавать вращающий момент.  [c.432]

Поскольку каждый из критериев соответствует определенному дифференциальному уравнению, физический смысл критериев подобия связан с физической сущностью уравнений (2.52) —(2.56). Например, критерий Ре характеризует отношение сил инерции, дейетвующих в жидкоети (ри) //), к силам внутреннего трения (руу// ). Это следует из уравнений (2.52), (2.53), так как степенные комплексы, указанные в скобках, характеризуют эти силы. Критерий Ог можно рассматривать как безразмерны комплекс, пропорциональный подъемной силе р РА7( силе инерции и обратно пропорциональный квадрату си.л  [c.100]


Основным показателем масла является вязкость, которая характеризует величину внутреннего трения между его частицами. От вязкости зависит несущая способность масляного клина, отвод теплоты, потери на трение в смаз11шаемых узлах, потери на прокачивание и др. Поэтому при изменении вязкости на 20—25 % исходной, как правило, масло заменяют. Если температура застывания превышает пределы, предусмотренные ГОСТ, то в определенных широтах требуется подогрев масла, так как оно становится высоковязким и его трудно подать на трущиеся поверхности, а это снижает КПД установки.  [c.345]

Необходимо указать, что и другие физические свойства претерпевают вполне определенные изменения после МТО. Например, фон внутреннего трения после иизкотемпературной МТО [66] снижается, а температура начала резкого возрастания температурной зависимости внутреннего трения увеличивается.  [c.43]

Другой причиной макроприработки является деформация контактирующих тел при действии нагрузок, тепловых полей или перераспределения внутренних напряжений. В результате полный начальный контакт поверхностей будет нарушен и для его восстановления потребуется определенный период времени. При этом колебание нагрузок и тепловых полей может привести к нестационарному процессу изнашивания, когда на протяжении всего периода эксплуатации будут контактировать то одни, то другие участки поверхностей трения.  [c.379]


Смотреть страницы где упоминается термин Трение внутреннее — Определени : [c.173]    [c.87]    [c.123]    [c.15]    [c.410]    [c.7]    [c.46]    [c.51]    [c.41]   
Испытательная техника Справочник Книга 2 (1982) -- [ c.131 , c.135 ]



ПОИСК



Определение внутренних сил

Определение сил трения

Трение внутреннее



© 2025 Mash-xxl.info Реклама на сайте