Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщениая математическая постановка задачи

ОБОБЩЕННАЯ МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ  [c.65]

Из рассмотренной энергетической постановки задачи и основных методических принципов ее решения вытекает математическая постановка, в общем виде сформулированная в [162]. Ниже излагается дальнейшее развитие обобщенной математической постановки решаемой задачи.  [c.199]

Уравнения (5.4) и (5.5) представляют собой математическую постановку задачи о теплообмене излучением в замкнутой системе в рамках обобщенного зонального метода. Эти уравнения переходят в полученные ранее уравнения (4.10) и (4.11), если принять допущение упрощенного зонального метода о постоянстве плотностей потоков эффективного излучения и температур по поверхности каждой из зон.  [c.197]


Уравнения (5.14) и (5.15) представляют собой полную математическую постановку задачи о теплообмене излучением в рамках обобщенного зонального метода для Л -зонной замкнутой системы, образованной серыми поверхностями, которые имеют как диффузную, так и зеркальную составляющую отражательной способности.  [c.201]

Условия теплового подобия. Явления теплообмена состоят в совместном протекании гидродинамических и тепловых явлений. Это находит отражение в математической постановке задачи. Уравнение Клапейрона — Менделеева неспособно замкнуть собой гидродинамические уравнения, потому что оно вводит в систему уравнений новое искомое — температуру Т. Для того чтобы замкнуть систему уравнений с новым искомым Т, необходимо добавить к системе уравнение теплообмена. Преобразование системы гидродинамических уравнений к обобщенным переменным приводит к выведенным выше гидродинамическим условиям подобия. Параметрами подобия должны служить 5 параметров (17 ) и (17"), рассмотренных выше  [c.167]

Изложенные выше понятия о проекте ЭМП и процессе проектирования позволяют с помощью обобщенной модели и ее уравнений перейти к общей теоретической постановке задачи проектирования. При этом необходимо абстрагироваться от физического содержания понятий и оперировать только их математическими символами и свойствами. Поступая таким образом, проект можно рассматривать в виде математического объекта или системы, однозначно определяемой заданием определенного числа параметров, под которыми понимаются все проектные данные. Учитывая зависимость некоторых проектных данных от времени, в общем случае проект ЭМП следует представлять в виде динамической многопараметрической системы. Такой подход позволяет для проектирования использовать математический аппарат синтеза многопараметрических динамических систем.  [c.68]

К сожалению, для общей постановки пространственных начально-граничных задач теории упругости в настоящий момент отсутствуют исчерпывающие результаты, относящиеся к вопросу о необходимых и достаточных условиях, обеспечивающих существование и единственность решения в зависимости от класса допускаемых краевых условий и ограничений на граничную поверхность. Однако существуют и иные (неклассические, обобщенные) постановки задач теории упругости, определяемые тем математическим аппаратом, который применяется для их решения ).  [c.243]

Опыт [2, 181 показывает, что при постановке задачи комплексной оптимизации любой разрабатываемой теплоэнергетической установки необходимо создание системы взаимосвязанных моделей. Эта система включает группу математических моделей отдельных узлов и элементов установки более общие модели для групп узлов и агрегатов обобщенную математическую модель всей теплоэнергетической установки с укрупненным учетом частных зависимостей. Конкретная структура системы моделей и их взаимосвязей для различных типов теплоэнергетических установок определяется стадией разработки или проектирования установки, точностью и полнотой располагаемой информации, возможностями ЭЦВМ и методов оптимизации и т. д. В связи с этим вопросы обоснования степени подробности построения каждой модели системы, поиска наиболее целесообразной организации обмена исходной и искомой информацией  [c.8]


Решений контактных задач, в которых равновесие оболочки описано геометрически или физически нелинейной теорией, в литературе значительно меньше. В основном это исследования Г. И. Львова [163—174]. В них предложена вариационная постановка контактных задач для тонкостенных гибких элементов конструкций на основе физических соотношений деформационной теории пластичности Ильюшина, теорий пластического течения и технических теорий нелинейной ползучести. С помощью математического аппарата вариационных неравенств дано определение обобщенного решения и задача сведена к проблеме минимизации функционала, заданного на множестве допустимых решений. Минимизация функционалов выполнена методом локальных вариаций, поперечное обжатие оболочки в зоне контакта не учтено.  [c.13]

Осесимметричные контактные задачи. Наибольший теоретический и прикладной интерес представляют основные смешанные задачи (ОСЗ) теории упругости в обобщенной постановке, когда краевые условия на внешней поверхности многослойного полупространства разделяются на совокупности произвольного четного 2п или нечетного числа 2п - 1 (п= 1,2,...) концентрических окружностей. Частными случаями этих задач являются контактные задачи для п концентрических кольцевых штампов или одного кругового и п - 1 концентрических кольцевых штампов с учетом сцепления в области контакта. Математический аппарат исследования ОСЗ непосредственно распространяется и на аналогичные контактные задачи для круговых и кольцевых штампов с учетом и без учета трения, а также на родственные смешанные задачи для многослойного полупространства с круговыми и концентрическими кольцевыми трещинами на границах раздела слоев. Иными словами, ОСЗ имеют общетеоретическое значение и, в свою очередь, являются базовыми для построения и исследования решений обширного класса контактных и других смешанных задач теории упругости для многослойного полупространства. Учитывая это положение, изложим подробнее математическую постановку и методику аналитического и численного решения ОСЗ.  [c.218]

Обсудим теперь некоторые обобщения, связанные с усложнениями постановки задачи и с модификациями методов исследования для проблем об оптимальном управлении. Почти везде выше речь шла о задачах, содержащих условия минимума (или максимума) величин I, являющихся интегралами от функций, заданных на движениях х (i) и управлениях и (t), или являющихся функциями от конечных (или промежуточных) величин X (t) и и (i). Между тем в прикладных задачах об управлении нередко возникают проблемы типа минимакса. Примером такой математической проблемы может служить следующая задача на движениях системы, описываемой уравнением  [c.213]

Поставленная задача в настоящее время разрешается главным образом экспериментальным путем с привлечением методов размерностей и подобия для обобщения результатов измерений. Экспериментальным путем проверяется также и корректность постановки задачи. Аналитический и численный методы исследования процессов теплоотдачи находят известное применение и в отдельных случаях приводят к удовлетворительным результатам. Однако они получили сравнительно небольшое распространение из-за сложности и нелинейности системы исходных дифференциальных уравнений и необходимости существенных упрощений задачи, которые приводят во многих случая х к недостаточно надежным результатам. Положение значительно усложняется из-за отсутствия достаточно общей теории турбулентного переноса тепла. По этим причинам экспериментальное исследование процессов теплоотдачи с привлечением методов размерностей и подобия для обобщения результатов измерений получило наибольшее распространение. Однако математическая формулировка задачи является важным средством, которое позволяет получить систему величин, существенных для изучаемого процесса, а также ряд выводов, разъясняющих смысл экспериментальных исследований и указывающих наиболее целесообразные методы представления данных измерений теплоотдачи.  [c.239]

Надо иметь и виду, что если в процессе решения поставленной задачи необходимо рассматривать только определенного вида ремонты или только замены, или работы по техническому уходу, то тогда под отказом следует понимать только эти работы. Такое обобщение понятия отказа мы используем для экономии изложения при установлении математических зависимостей, придавая последним большую общность. Так, например, если решается задача по определению числа капитальных ремонтов в некотором планируемом промежутке, то под обобщенным понятием отказ следует понимать IB данном случае постановку машин в капитальный ремонт, исключая из рассмотрения другие ремонтные воздействия. Если же определяется число текущих ремонтов, то под отказом следует иметь в виду моменты проведения текущих ремонтов и т. д.  [c.11]

Теория подобия и моделирования рассматривается как база научной постановки опытов и обобщения экспериментальных данных. Из анализа дифференциальных уравнений, характеризующих общие функциональные связи между основными факторами, и условий однозначности, включающих характеристики геометрии, физических свойств и краевые условия (начальные и граничные), получаем предпосылки к экспериментально-теоретическому изучению процессов. В решении поставленных задач приходится встречаться с различными по сложности явлениями. В некоторых случаях теоретическое решение задач позволяет получить общие качественные связи параметров, например в определении коэффициента трения при решении контактно-гидродинамической задачи. При анализе же весьма сложного процесса изнашивания твердых тел или твердосмазочных покрытий в настоящее время не удается получить достаточно общих математических описаний явлений. В связи с этим различается подход к проблеме трения и износа тел, работающих в масляной среде и всухую (с твердо-смазывающими покрытиями или из самосмазывающихся материалов). Теория подобия базируется на следующих основных теоремах  [c.160]


Излагаемые в данной главе метод исследования закономерностей изменения предельных нагрузок и теория расчета элементов композитных конструкций по их обобщенным характеристикам опираются в основном на представления, вытекающие из постановки и методов решения краевых задач математической физики.  [c.15]

Плоские контактные задачи. В условиях плоской деформации многослойного полупространства наибольший теоретический и прикладной интерес представляют основные смешанные задачи в обобщенной постановке, аналогичных осесимметричным ОСЗ (п. 4). В случае плоских ОСЗ краевые условия на внешней поверхности многослойного полупространства разделяются на совокупности произвольного числа 4п или 2(2п - 1) (п = 1,2,...) прямых = =Ь д. (к = 1,2п или = 1,2п - 1). Частными случаями этих задач являются контактные задачи для четного 2п или нечетного числа 2п - 1 (п = 1,2,...) полосовых в плане штампов с учетом сцепления, трения и без трения в областях контакта. Кроме того, математический аппарат исследования плоских ОСЗ непосредственно распространяется и на родственные смешанные задачи для многослойного полупространства с полосовыми трещинами на границах раздела слоев.  [c.224]

Ниже проблема автоматизации проектирования САУ рассмотрена как проблема разработки комплекса алгоритмов, дающих с помощью ЦВМ решение задачи достижения экстремума обобщенного функционала эффективности системы управления О (х) на основе принципа сложности, обеспечивающего техническую и математическую корректность ее постановки.  [c.21]

Эти уравнения, в которых координаты точки М н их производные определяются уравнениями (5.5) и поэтому должны рассматриваться как известные функции времени, и являются уравнениями общей (или обобщенной) ограниченной задачи трех тел (трех материальных точек). Отметим при этом, что масса пассивной точки М2 не входит в эти уравнения и может быть какой угодно. Просто эта масса не оказывает никакого действия на две другие массы. Можно считать, так же как это делается часто в математических классических ис-следова-ниях, что /П2 равна нулю, и в результате такого предположения мы получим те же самые уравнения (5.6). В астрономических задачах масса тг оказывается чрезвычайно малой по сравнению с массами то и т. Поэтому действие малой массы по закону Ньютона достаточно мало и этим малым действием в ряде случаев можно, оказывается, пренебречь, так что в задаче масса тг как бы не существует или как бы не действует. Таким образом, к ограниченной задаче можно подойти двумя путями или считая, что точка М2 имеет массу, равную нулю (ее часто так и называют нулевая масса ), или считая, как это делаем мы, что масса шг не равна нулю, но не действует на две другие, что и отмечается здесь в ее названии — пассивно действующая, или просто пассивная масса. Математическая задача, т. е. задача об исследовании и решении уравнений (5.6), не зависит от ее астрономической постановки, но, с одной стороны, странно говорить о движении нулевой массы, т. е. о движении чего-то, что в действительности не существует, а, с другой стороны, может показаться нереальным предположение о том, что конечная масса никак себя не обнаруживает, хотя ее движение может быть наблюдаемо (например, движение космической ракеты ). Все дело в том, что и в том, и в другом случае задача является приближенной, и систе.ма трех материальных точек, и в случае общей задачи и в случае ограниченной, представляет собой только абстрактную модель действительно существующих в природе систем небесных тел.  [c.214]

Следует отметить, что в зависимости от типа выбранных математических моделей, сформулированной цели управления, принятого критерия оптимизации постановка оптимизационной задачи будет иметь всякий раз соответствующий этим особенностям вид. Поэтому ниже эта задача будет представлена в обобщенном виде.  [c.61]

Принцип математической аналогии позволяет экспериментально найти решение дифференциального уравнения на модели. Для этого необходимо в соответствии с физической постановкой задачи дать математическое описание процесса, которое с помощью тео1рии обобщенных переменных следует привести к обобщенному виду, т. е. получить математическую модель. Под математической моделью понимается полное математическое описание процесса ( включая и условия однозначности) iB обобщенных переменных. Математическая модель процесса или явления может быть решена на моделях любой физической природы, если имеется тождество математических моделей. Для математического мо-13 195  [c.195]

Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

С выдающихся работ С. Л. Соболева в математическую физику вошло представление об обобщенной постановке краевых задач и обобщенных решениях. Возникнув на почве чисто математических соображений, связанных со стремлением расширить постановку задач, оно вместе с тем оказалось и весьма физичным. Вначале обобщенное решение для задач х будет введено чисто математически, а потом будет дана механическая трактовка.  [c.112]

Постановка проблемы. Совместными усилиями экономистов, социологов, психологов и математиков в процессах принятия социально-экономических решений описана связь между анализом ситуаций и проблем постановкой задач формулировкой моделей формальными и эвристическими методами принятия решений. Такие математические методы, как лицейное программирование, целые разделы теории игр, многие другие области исследования операций, и такие эвристические процедуры, как Дельфи , ПАТТЕРН и другие, первоначально были разработаны для решения конкретных экономических, военных и иных задач. Лишь затем определялись возможности применения данного метода к другим задачам, которые удавалось свести к соответствующей типовой задаче. Дальнейшее обобщение позволило выявить точки соприкосновения отдельных методов (например, соответствие линейного программирования игре двух лиц с нулевой сум1мой). Пока этот путь в теории решений остается основным и преобладающим.  [c.266]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]


На основе изложенного может быть сформулировано обобщенное уравнение энергии с учетом различных видов теплообмена (лучеиспускание, конвекция, теплопроводность), связанных с движением среды, наличием источников и стоков тепла, нестаци-онарности режима и работы объемных сил и сил трения. Задача о лучистом теплообмене, таким образом, является частным случаем этой весьма широкой постановки вопроса. Определение отдельных функций, входящих в общее уравнение энергии, строго математическим путем пока представляет непреодолимые трудности. В частности, при решении задач по лучистому теплообмену необходимо знать температурное поле и поле коэффициентов поглощения. Первое из них является результатом одновременно протекающих процессов тепловыделения и теплоотдачи, связанных с процессами горения и движения среды, т. е. с явлениями как кинетического, так и диффузионного характера, чаще всего не поддающихся точному математическому описанию.  [c.198]

Численному исследованию геометрически нелинейных слоистых ортотропных оболочек в классической постановке посвящены работа [1.16, 7.4]. Для решения нормальной системы шести обыкновенных дифференциальных уравнений в монографии [ 1.16] использован процесс последовательных приближений, основанный на методе квазилинеаризации. Обобщение упомянутых алгоритмов на оболочки вращения типа Тимошенко дано в работах [73, 1.15], где обсуждаются ортотропные оболочки однородные [73] и многослойные [ 1.15]. В математическом плане зти задачи могут быть также сведены к инто-р1фованию нормальной системы шести нелинейных дифференциальных уравнений,  [c.127]

В этой книге излагаются основные идеи и методы-механики хрупкого разрушения, а также некоторые их обобщения. Первая глава имеет вводный характер, во второй и третьей главах изло-. жены физическце и математические основы теории хрупкого разрушения. Главное внимание уделяется наиболее принципиальным вопросам, относящимся к формулировке дополнительных условий на фронте трещин и к постановке физически коррект ных математических задач о разрушении твердых тел (четвертая-восьмая главы). В Приложении I для справок приведены наиболее значительные результаты вычислений коэффициентов интенсивности напряжений для тел с разрезами. Изложение, ориентировано не только на научных работников и студентов, но и на инженеров, в связи с чем в Приложениях И и И1 помещены некоторые экспериментальные данные, относящиеся к основным конструкционным материалам.  [c.7]

Обобщение теории крыла на неустановившееся движение представляет особые трудности, так как при этом циркуляция вокруг крыла (вообще говоря) не сохраняется, и с задней его кромки вследствие этого сходят вихри или вихревая пелена. Таким образом, задача усложняется не только математически, но и с точки зрения физической постановки. Первые исследования задач этого типа были выполнены в 20-х годах В. Бирнбаумом и Г. Вагнером в Германии и Г. Глауертом в Англии. Последним было, в частности, предпринято изучение колеблющегося крыла. Несколько иной подход к задаче о колебании крыла был развит М. В. Келдышем и М. А. Лаврентьевым (1935). Исследования тонкого крыла со сбегающими вихрями были выполнены в 30-х годах в ЦАГИ также Л. И. Седовым. Подробный анализ влияния сходящей с крыла вихревой пелены, ее формы и распределения циркуляции дал Н. Н. Поляхов. Теория неустановившегося движения тонкого крыла с учетом сжимаемости при дозвуковых скоростях разрабатывалась М. Д. Хаскин-дом (1947).  [c.293]

Пиже ставились следующие задачи формулировка общей физической и математической модели двумерных гиперзвуковых течений в нормальном магнитном поле с учетом вязкости и турбулентности, определение характеристик торможения сверхзвукового потока и необратимых потерь, демонстрация неединственности рептений уравнений рассматриваемого класса в изучаемой постановке, получение обобщенной квазиодномерной модели для электрических величин и сопоставление полученных на ее основе результатов с данными численного рептения полной системы МГД-уравнений.  [c.575]

Теория оболочек, очевидно, прикладная наука, но она связана со многими разделами современного анализа, являясь источником постановки ряда важных и интересных математических задач. Изучение безмомент-лой теории выпуклых оболочек привело к необходимости расширения рамок классической теории функций. Была развита новая ветвь анализа — теория обобщенных аналитических функций, которая также тесно связана с геометрической проблемой бесконечно малых изгибаний выпуклых поверхностей (И. Н. Векуа, 1959).  [c.267]


Смотреть страницы где упоминается термин Обобщениая математическая постановка задачи : [c.15]    [c.79]    [c.12]    [c.48]   
Смотреть главы в:

Численное решение задач теплопроводности и конвективноного теплообмена при течении в каналах  -> Обобщениая математическая постановка задачи



ПОИСК



656 —• Постановка задачи

К постановке зг ачи

Математическая постановка задачи

Обобщения



© 2025 Mash-xxl.info Реклама на сайте