Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент радиационной теплопроводност

Используя коэффициент радиационной теплопроводности Яд, можно выразить формулой, аналогичной уравнению Фурье для молекулярной теплопроводности. При этом для малых разностей температур (T i-7 2)  [c.99]

Коэффициент радиационной теплопроводности для газового слоя в структуре первого типа можно определить из условий радиационного теплообмена между двумя бесконечными параллельными пластинами, расположенными друг над другом. В этом случае при сравнительно небольших различиях в температурах пластин плотность потока результирующего излучения между ними будет равна АТ/б ., а коэффициент радиационной теплопровод-  [c.173]


Для структуры второго типа при определении коэффициента радиационной теплопроводности в газовых слоях необходимо рассматривать условия теплообмена излучением между двумя параллельными полосами малой ширины расположенными друг против друга на расстоянии бзл. Естественно, что коэффициент радиационной теплопроводности будет при этом зависеть  [c.173]

В настоящей главе изложены теоретические основы диффузионного приближения с учетом селективности излучения и анизотропии объемного и поверхностного рассеяния [Л. 29] проанализировано влияние формы индикатрисы рассеяния на коэффициент диффузии излучения и указаны условия, при которых этот коэффициент принимает простейшие выражения как частный случай диффузионного приближения рассмотрено приближение радиационной теплопроводности.  [c.145]

Формула (5-76) является расчетной для приближения радиационной теплопроводности в случае полного излучения для серой среды с постоянным коэффициентом преломления. По своей структуре она аналогична выражению (5-65) для спектрального излучения.  [c.165]

Таким образом, для полного излучения температурное поле в среде в приближении радиационной теплопроводности описывается дифференциальным уравнением (5-76) с граничными условиями (5-77). В качестве граничных условий может быть задано либо поле температур на поверхности Ту,, либо поле полной поверхностной плотности результирующего излучения рез. Все особенности уравнений радиационной теплопроводности в отношении заранее неизвестных коэффициентов La (t=l, 3), m и а уже обсуждались при рассмотрении общего случая диффузионного приближения.  [c.166]

Коэффициент теплопроводности для твердотельных слоев определяется в обеих структурах коэффициентом молекулярной теплопроводности твердого каркаса слоя загрязнений = Л." = Для газовых слоев эффективный коэффициент теплопроводности определяется суммой молекулярной мол/ радиационной составляющих = Я ол. г +>рад. г = мол. г+ + рад. г где г = Кол. г = Кол. г Влияние конвективной состав-ляющей переноса может быть учтено в рассматриваемых структурах величинами р и г> которые при этом могут иметь различные значения.  [c.172]

Если погруженная в слой поверхность обладает высоким коэффициентом отражения, влияние теплопроводности и свойств частиц более существенно. При радиационном обмене функция еэ сильно зависит в этом случае от излучательных свойств частиц (при переходе от сильно отражающих к сильно поглощающим частицам величина еэ изменяется почти в 2 раза при Тст = 0). Сложный теплообмен приводит к ослаблению влияния параметра ер. Кроме того, функция ез практически не отличается от аналогичной зависимости для черной поверхности (гст = 0,1) (рис. 4.14, а).  [c.178]

Неметаллические материалы имеют значительно меньшие величины к = 0,023—2,9 вт (м град). Среди них наибольший интерес представляют теплоизоляционные, керамические и строительные материалы. Большинство этих материалов имеет пористое строение, поэтому их коэффициент теплопроводности учитывает не только способность вещества проводить теплоту соприкосновением структурных частиц, но и радиационно-конвективный теплообмен в порах.  [c.271]


Рассмотрим далее вопрос об определении температуры горячей поверхности пористой стенки при эффузионном охлаждении. Оценим радиационно-конвективный теплообмен между горячим газом и стенкой коэффициентом а. Если пренебречь теплопроводностью стенки вдоль поверхности, то при стационарном режиме теплообмена подведенная к поверхности теплота расходуется только на увеличение энтальпии охладителя в системе.  [c.475]

Последние две зависимости формально совпадают с расчетными уравнениями для теплоотдачи при пленочной конденсации пара на холодной стенке. Зависимости для теплоотдачи учитывают перенос теплоты поперек паровой пленки только путем теплопроводности. Лучистая (радиационная) составляющая коэффициента теплоотдачи может быть найдена расчетным путем (гл. 18).  [c.320]

Опытное исследование интегральных коэффициентов излучения твердых тел может быть проведено следующими методами радиационным, калориметрическим, методом регулярного режима и методом непрерывного нагревания с постоянной скоростью. Во всех методах перенос тепла за счет теплопроводности и конвекции должен быть пренебрежимо мал по сравнению с излучением.  [c.385]

Число Ki характеризует радиационно-кондуктивный перенос к и Л —коэффициенты теплопроводности и ослабления среды.  [c.440]

Среди других более привлекательных конструкционных особенностей углеродных волокон следует отметить их отличную обрабатываемость и способность к формообразованию, а также чрезвычайно низкий коэффициент линейного расширения. Благодаря первому качеству стоимость механической обработки значительно ниже, чем для материалов с бором. При разработках можно рассчитывать на малые радиусы сгиба и на сложные контуры, что объясняется высокой способностью к формообразованию и плетению волокон. Из этих волокон, кроме того, легко может быть получена ткань. Их низкий температурный коэффициент линейного расширения (около нуля) позволяет разрабатывать конструкции, в которых требуется высокое постоянство размеров, например антенны и базовые детали. Относительно высокая теплопроводность снижает температурные напряжения и коробление благодаря равномерному распределению теплоты от локального источника (радиационного или конвекционного).  [c.85]

При прогнозировании работоспособности элементов конструкций из графита в современных ядерных установках необходимо знать закономерности радиационного изменения свойств графита в широком диапазоне температуры и при флюенсе быстрых нейтронов, достигающем 10 2 см- и выше. Основными свойствами в этом плане являются стабильность линейных размеров, прочность, ползучесть, модуль упругости, коэффициенты теплового расширения и теплопроводности, а также стойкость графита к окислению.  [c.6]

Полученное противоречие обусловлено тем, что величина t в уравнении (1.17) отождествлена с определяемыми рентгеновскими дифракционными методами размерами областей когерентного рассеяния Lav В результате облучения размеры ОКР становятся меньше, но уменьшение коэффициента теплопроводности при этом более значительно, чем это следует из уравнения Дебая. Следовательно, изменение теплопроводности обусловлено не только изменением размеров ОКР, но и рассеянием фононов на радиационных дефектах.  [c.111]

Помимо высокой коррозионной и радиационной стойкости молибден обладает такими важными для работы в жидких металлах свойствами, как высокая теплопроводность, сравнительно низкий коэффициент теплового расширения и высокое сопротивление эрозии.  [c.36]

ВИСИТ лишь ОТ внешних параметров [коэффициента теплообмена (а/Ср)о, энтальпии 1е и давления ре] и температуры поверхности Tw Здесь qa и <7н — конвективный и радиационный тепловые потоки к непроницаемой стенке, г — степень черноты поверхности. Подробнее эти вопросы будут рассматриваться в последующих главах, посвященных пористому охлаждению и механизмам разрушения различных классов материалов. Величина qx зависит от температурного поля внутри покрытия, а также от коэффициента теплопроводности материала, как это следует из закона Фурье  [c.52]

Намного шире возможный диапазон изменения коэффициента теплопроводности. Это связано как с изменением фазового состояния отдельных компонент и сильным влиянием температуры на теплопроводность каждой фазы, так и с появлением при больших температурах дополнительной, радиационной составляющей теплопроводности внутри пор.  [c.75]

Аналитическое исследование радиационно-конвективного теплообмена в кольцевом канале при турбулентном режиме течения было сравнительно недавно предпринято в Л. 441]. Однако автору пришлось привлечь для решения задачи результаты экспериментальных исследований по определению профиля скоростей в кольцевом канале и коэффициентов турбулентной диффузии в потоке. Кроме того, принятый метод решения предполагает малые значения оптических плотностей потока и доминирующее влияние теплопроводности по сравнению с радиационным теплообменом в среде.  [c.401]

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ РАСПЛАВЛЕННОГО АЛЮМИНИЯ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 725—1570°С (новый радиационный метод)  [c.83]

Для исследования температурной зависимости коэффициента теплопроводности ра-сплавленного алюминия в диапазоне температур 800— 1600° С был разработан радиационный метод. По этому методу стационарное температурное поле по высоте столбика расплавленного  [c.83]


Лучистый обмен между стенкой и псевдоожиженным слоем может быть учтен с помощью радиационной составляющей Ял эффективного коэффициента теплопроводности слоя. Поскольку формула (10-9) получена как уравнение кондуктивного теплообмена стенки лишь с первым рядом частиц, а лучистый обмен заведомо интенсивно происходит и со всеми видимыми стенкой частицами других рядов, то нельзя для подстановки в Хэф и формулу (10-9) взять Ял просто как  [c.334]

Яр — радиационный коэффициент теплопроводности, обусловленный лучистым переносом тепла  [c.12]

Чтобы объяснить содержание радиационного метода оценки коэффициента теплопроводности, представим себе, что на радиометр падают одинаковые лучистые потоки, посылаемые различными серыми поверхностями (поверхностью незагрязненной окисленной стальной эталонной трубы и поверхностью натрубных отложений). Степень черноты этих поверхностей и температура равны соответственно и бз. эт и Тз- Тогда при равных лучистых потоках, посылаемых трубами, показания радиометра будут одинаковыми для обоих случаев, и можно записать  [c.75]

Эффективный коэффициент теплопроводности складывается из двух независяших друг от друга членов — коэффициента молекулярной теплопроводности и коэффициента лучистой (радиационной) теплопроводности, причем последний также характеризует лишь среду как таковую и не зависит от условий на стенках и конфигурации системы. Коэффициент радиационной теплопроводности выражается формулой  [c.20]

М. Черни и Л. Гензель, пренебрегшие молекулярной теплопроводностью, показали, что радиационный тепловой поток внутри стекломассы (т. е. когда излучение у границ слоя поглощается полностью) характеризуется коэффициентом радиационной теплопроводности дуц.  [c.55]

Лредставляют интерес исследования сложного теплообмена в другой разновидности концентрированных дисперсных систем — плотном слое. При исследованиях этой среды оказывается возможным за счет вакууми-рования системы исключить конвекцию и теплопровод- ность газа и изучать только радиационный перенос в широком диапазоне температур [153—157]. Результаты этих работ свидетельствуют о том, что для нлотного слоя при обработке экспериментальных данных оказыва.-ется удачным предположение об аддитивности различных механизмов переноса энергии [157]. При этом перенос излучения учитывается введением-коэффициента лучистой теплопроводности  [c.139]

При низких температурах Ян обычно много меньше коэффициента молекулярной теплопроводности твердых веществ "ks (рис. 4-8). Но с ростом температуры наблюдается быстрое изменение соотношения между радиационной Яя и молекулярной %s составляющими коэффициента теплопроводности, причем увеличение размера пор приводит к существенному возрастанию вклада излучения. Эти закономерности иллюстри-  [c.99]

Приближение радиационной теплопроводности является частным случаем диффузионного приближения, когда в каждой точке среды имеет место локальное радиационное равновесие. Впервые это приближение было предложено Росселандом [Л. 22, 346] и сформулировано им в виде уравнения (5-4). Это приближение получило большое распространение в астрофизических задачах для исследования переноса излучения в недрах звезд, где оптическая толщина весьма велика и состояние среды и излучения оказываются близкими к локальному радиационному равновесию. В астрофизической и иностранной литературе по теплофизике понятия диффузионного приближения и приближения радиационной теплопроводности довольно часто отождествляют между собой. Россе-ланд в своей работе, впервые сформулировав общее уравнение диффузионного приближения, рассматривал его для частного случая состояния среды и излучения, близкого к термодинамическому равновесию, которое получило название приближения радиационной теплопроводности, Именно для этого приближения им рекомендованы окончательные расчетные формулы (5-2) и (5-4) и дана закономерность осреднения коэффициента поглощения по всем частотам (5-3),  [c.161]

Таким образом, температурное поле в среде для приближения радиационной теилопроводности описывается уравнением (5-65) с граничными условиями (5-66), согласно которым на стенке может быть задано либо поле температур Ej. либо поле Е Так же как в диффузионном приближении, тиближение радиационной теплопроводности содержит величины неизвестных заранее коэффициентов Лгг(г = 1, 2, 3), т я определяемых с той или иной степенью точности. Все вышесказанное об этих коэффициентах для случая диффузионного приближения остается справедливым и для приближения радиационной теплопроводности.  [c.163]

Процесс радиационно-конвективного теплообмена исследовался в следующей постановке. По каналу движется серая излучающая и поглощающая среда с известными физическими параметрами, которые с целью упрощения предполагаются постоянными. Температура среды в начальном сечении Го и температура стенки канала Т-и, известны по условию и постоянны. Движение среды предполагается резко турбулентного характера со средним по сечению коэффициентом турбулентной теплопроводности Ят- Это позволяет рассматривать дискретную схему потока турбулентное ядро, пограничный слой и стенку канала (рис. 15-1). Принятая схема дает возможность при определении коэффициента теплоотдачи от потока к стенке использовать закономерности ра-диационно-кондуктивного теплообмена применительно к пограничному слою. В пределах турбулентного ядра температура среды и ее скорость принимаются постоянными и равными их осредненным по сечению канала величинам. В пограничном слое толщиной б скорость среды меняется от значения w на границе с ядром потока до нуля на стенке, а температура—от значения температуры ядра Т х) для данного сечения канала с координатой X до заданного значения на стенке канала. Коэффициент турбулентной теплопроводности в пределах пограничного слоя равен нулю. За счет радиационно-конвективного теплообмена потока со стенкой происходит изменение температуры текущей среды. Посколь-402  [c.402]

Сперва выведем теоретическое выражение коэффициента теплообмена псевдоожиженного слоя шарообразных частиц со стенкой Ост, принимая во в нимание перенос тепла через газовую прослойку лишь путем молекулярной теплопроводности, а затем учтем конвективную и радиационную составляющие, например, вводя в полученную формулу вместо коэффициента теплопроводности среды Кс (Коэффициент эффективной теплопроводности  [c.324]

Чтобы учесть излучение в тепловом процессе, включающем конвекцию и теплопроводность, удобно ввести единичную проводимость для теплощрго излучения, или коэффициент радиационной теплоотдачи  [c.107]

Из трех видов теплообмена — конвекции, теплопроводности и радиационного теплообмена — последний поддается наиболее точному эталонированию. Современная теория радиационного тепло-юбмена располагает средствами расчета потока, который в определенных геометрических и температурных условиях при известных степенях черноты падает на тарируемый прибор. Однако более надежно одновременно измерять потоки абсолютным и тарируемым лриборами, поставленными в одинаковые условия по геометрии и степени черноты. При тарировке рабочий коэффициент (величина, обратная чувствительности) определяется как отношение теплового потока к ЭДС, развиваемой датчиком.  [c.287]


В этих условиях длительная прочность материала стенки бланкета при 1000° С и ресурсе не ме-нее 10 000 ч должна быть также не менее 4—5 кгс/мм . Кроме того, к материалу стенки предъявляются и другие жесткие требования максимальный предел прочности при 1000° С материала стенки должен быть не менее 40—50 кгс/мм стенка должна иметь близкую к меди высокую теплопроводность (не менее 100—300 Вт/(м град)) минимальный коэффициент термического расширения (менее 4—5-10 1/град) высокий модуль упругости минимальный коэффициент Пуассона (менее 0,3) минимальную упругость пара в рабочих условиях (менее 10 мм рт. ст.) высокую совместимость с теплоносителем и достаточно высокие технологичность и свариваемость. К этим разнообразным требованиям присоединяются еще и ядерно-физические материал стенкн бланкета должен иметь минимальные сечения ядерных реакций, не должен подвергаться радиационному охрупчиванию и распуханию, должен оказывать максимальное сопротивление ионному распылению и эрозии вследствие блистерообразова-ния.  [c.14]

Как видно из рассмотренной схемы тепловой модели, несомненными достоинствами теплового моделирования являются относительная простота и физичность. На граничных поверхностях, кроме того, имеется полная возможность задавать граничные условия первого, второго или третьего. рода. При задании граничных условий первого рода тем1пература пове1рхяос71и, поддерживается на определенном уровне в соответствии с требованиями выполнения условий подобия. Для реализации граничных условий второго рода задается определенная мощность электрического нагревателя поверхности, а при задании граничных условий третьего рода между поверхностью и нагревателем или охлаждающим теплоносителем вводится слой дополнительного термического сопротивления, моделирующий коэффициент внеш ней теплоотдачи. Довольно удобным метод теплового моделирования является и для экспериментального исследования процессов нестационарной теплопроводности с радиационными граничными условиями.  [c.279]

Задача ра оаматрмвается в следующей постановке. Ме жду серыми плоскими поверхностями I и 2 с заданными температурами T i и и поглощательными опо-соб ностями щ и Й2 находится серая поглощ эющая и теплопроводная среда с постоянными коэффициентами поглощения а и теплопроводности к (рис. 14-1). Рассеяние в среде и внутренние источники тепла отсутствуют, а толщина слоя равна L. В принятых условиях требуется иайти распределение температур в слое и величину суммарного радиационно-кондуктивного потока тепла через слой.  [c.383]

Теплоизоляция (лабораторных сосудов В OIL 11/02 роторных компрессоров F 04 С 29/04 самолетов и т. п. В 64 С 1/40 сосудов F 17 С (высокого давления (баллонов) 1/12 низкого давления 3/02-3/10) В 65 D (тара с теплоизоляцией в упаковках) 81/38 труб F 16 L 59/(00-16) центрифуг В 04 В 15/02) Теплолокаторы G 01 S 17/00 Теплоносители, использование в инструментах и машинах для обработки льда F 25 С 5/10 Теплообменники [устройства для регулирования теплопередачи F 13/(00-18), 27/(00-02) паровые на судах В 63 Н 21/10 из пластических материалов В 29 L 31 18 F 27 (подовых печей В 3/26 регенеративные D 17/(00-04) шахтных печей В 1/22) систем охлаждения, размещение на двигателях F 01 Р 3/18] Теплопроводность (использование для сушки материалов F 26 В 3/18-3/26 исследование или анализ материала путем G 01 N (измерения их теплопроводности 25/(20-48) определения коэффициента теплопроводности 25/18)) Термитная сварка В 23 К 23/00 Термодис узия, использование для разделения В 01 D (жидкостей 17/09 изотопов 59/16) Термолюминесцентные источники света F 21 К 2/04 Термометры контактные G 05 D 23/00 Термообработка <С 21 D (железа, чугуна и стали листового металла 9/46-9/48 литейного чугуна 5/00-5/16 общие способы и устройства 1/00-1/84) покрытий С 23 С 2/28 цветных металлов с целью изменения их физической структуры С 22 F 1/00-1/18) Термопары (Н 01 L 35/(28-32) использование <(в радиационной пирометрии J 5/12-5/18 в термометрах К 7/02-7/14) G 01 для регулирования температуры G 05 D 23/22)] Термопластичные материалы [В 29 С (способы и устройства для экст-  [c.188]

Результаты измерения коэффициента теплопроводности золовых отложений при различных температурах представлены на рис. 3-18, где кривая 1 получена ра-диационно-кондуктивным методом, а кривая 2 и 3 радиационным методом.  [c.113]


Смотреть страницы где упоминается термин Коэффициент радиационной теплопроводност : [c.251]    [c.143]    [c.15]    [c.20]    [c.654]    [c.64]    [c.437]    [c.76]    [c.99]    [c.342]    [c.296]   
Гидродинамика многофазных систем (1971) -- [ c.251 ]



ПОИСК



Коэффициент теплопроводности

Мел — Коэффициент теплопроводност

Радиационная коэффициент

Радиационная теплопроводность



© 2025 Mash-xxl.info Реклама на сайте