Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные системы с распределенными параметрами

ЛИНЕЙНЫЕ СИСТЕМЫ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ  [c.262]

Распределение молекулярной концентрации в периодических и структурно-периодических линейных системах с распределенными параметрами других типов проанализировано в работах [43, 95, 96, 98, 106, 107].  [c.142]

Рассмотрим условия, при которых смещения системы с распределенными параметрами и вязким трением могут быть представлены в виде суммы собственных функций недемпфированной системы, и найдем выражения для коэффициентов разложения, аналогичных полученным в 1. 1. Внутренние напряжения линейной упругой системы удовлетворяют условиям равновесия Коши [9]  [c.22]


Сложность теплотехнических объектов управления предопределяет необходимость упрощений, принимаемых на стадии выбора математической модели. Например, математическое описание динамики реальной системы с распределенными параметрами может производиться в форме обыкновенных нелинейных дифференциальных уравнений. Для расчета АСР достаточно располагать линейной моделью, которая получается в результате линеаризации исходного нелинейного уравнения. Методы построения математических моделей тепловых объектов на основе обыкновенных дифференциальных уравнений рассмотрены в [31, 38].  [c.466]

Реальные конструкции, строго говоря, надлежит рассматривать как материальные системы с распределенными параметрами, которые обладают неограниченным множеством степеней свободы и соответственно бесконечным множеством собственных частот. В силу счетности бесконечного множества собственных частот таких систем число их, располагающееся в ограниченном частотном диапазоне, всегда конечно. Практический интерес представляет часть полного спектра системы, ограниченная по частоте сверху. К ней, естественно, принадлежит конечное число собственных частот. Некоторые из них могут быть равными нулю (в единой упругой системе их не более шести). Конкретное расположение верхней границы диапазона частот определяется целями анализа и структурой исследуемого объекта (системы). Существенно, что в процессе трансформации системы через верхнюю границу частотного диапазона, отсекающую верхнюю часть ее спектра, может идти обмен собственных движений (рис. G.1). Например, если у системы в процессе трансформации увеличивается какой-либо линейный размер, то в диапазон частот, ограниченный сверху, могут вливаться новые собственные движения, и об-  [c.84]

Рассмотрим метод Фурье [139] применительно к нелинейным уравнениям в частных производных гиперболического типа,, близким к линейным. Он в сочетании с методом усреднения позволяет во многих случаях исследовать колебательные процессы в системах с распределенными параметрами.  [c.159]

Описанный в данном разделе метод формирования линейной математической модели ПГС как системы с распределенными параметрами и получение на ее базе передаточных функций ПГС с использованием сигнальных графов имеет некоторые преимущества по сравнению с матричными методами, описанными в разд. 2.8. Благодаря исключению вариаций расходов в два раза уменьшается число переменных и уравнений. Соответственно каждый элемент ПГС описывается не матричным уравнением четырехполюсника, а одним линейным уравнением. Структура части сигнального графа, описывающей пассивную часть ПГС, полностью повторяет структуру описываемой части ПГС, что, с одной стороны, облегчает формирование графа, а с другой—делает граф более наглядным.  [c.146]

На основе работ, выполненных в 1936 г. в ВЭИ, в 1938—1939 гг. были опубликованы исследования А. В. Михайлова, который предложил использовать в теории регулирования частотные методы, ранее применявшиеся в радиотехнике, и сформулировал новый критерий устойчивости линейных систем автоматического регулирования. В 1939 г. в ВЭИ В. В. Солодовников применил преобразование Лапласа для решения задач теории регулирования и провел анализ устойчивости системы регулирования с распределенными параметрами.  [c.238]


В послевоенный период теория автоматического регулирования формируется как самостоятельная научная дисциплина. Существенное влияние на ее развитие оказали результаты, полученные в смежных областях, особенно радиотехнике. Критерий Найквиста — Михайлова и критерий Михайлова были распространены на системы, описываемые дифференциальными уравнениями высокого порядка. Возможность использования экспериментально снятой амплитудно-фазовой характеристики устойчивой разомкнутой системы для определения устойчивости замкнутой системы делает частотные методы весьма распространенными на практике. В 1946 г. эти критерии были распространены на случаи нейтральных и неустойчивых разомкнутых систем. Теория устойчивости линеаризованных систем с сосредоточенными параметрами получила свое завершение в разработке теории Д-разбиения. В 1946 г. были исследованы закономерности расположения корней целых функций на комплексной плоскости, характеризующие устойчивость систем с распределенными параметрами (трубопроводы, длинные линии электропередач и т. д.) и с элементами с транспортным запаздыванием. На системы с запаздыванием был распространен метод частотных характеристик систем с сосредоточенными параметрами. В 1947 г. этот метод был распространен на один класс систем с распределенными параметрами. В связи с задачами стабилизации линейных систем в 1951 г. было  [c.248]

В настоящей работе рассматриваются свободные и вынужденные колебания упругой гироскопической системы с распределенными и сосредоточенными массами. Члены, соответствующие силам внешнего и внутреннего трения, считаются малыми они отнесены к правым частям и входят под знак малого параметра а. Таким образом, формально линейные дифференциальные уравнения в частных производных, описывающие колебания исследуемой системы, и краевые условия приобретают вид квазилинейных. Рассматриваемая краевая задача решается методом малого параметра, обобщенным на системы с распределенными и сосредоточенными параметрами [1]..  [c.6]

В настоящей статье для решения краевой задачи, описывающей поведение упругой гироскопической системы с распределенными и сосредоточенными массами, используется метод, развитый в [1]. Средние квадратические отклонения параметров системы, а также корреляционные моменты [2] предполагаются достаточно малыми и известными величинами. Гироскопический эффект распределенной массы считается пренебрежимо малым. Рассматривается линейная краевая задача, однако предполагаемое решение без труда распространяется и на квазилинейную краевую задачу с квазилинейными граничными условиями.  [c.22]

Полученные в настоящей работе результаты показывают, что применение методов теории цепей к расчету гидравлических и механических систем позволяет изучать даже весьма сложные по структуре системы. Использование графа распространения сигнала дает эффективный метод построения электронных моделей с учетом линейных и нелинейных элементов системы, а для линейных систем — метод расчета необходимых для анализа системы передаточных функций. Полученные в работе выражения передаточных функций для системы с сосредоточенными параметрами (9) и (10) и с распределенными параметрами (17) и (18) и составленные программы для аналоговых электронно-вычислительных машин (см. рис. 14 и 19) могут быть использованы для анализа устойчивости и качества переходных процессов конкретных гидравлических силовых следящих систем.  [c.92]

В отдельную группу можно выделить методы анализа динамики гидросистем с распределенными параметрами (упругостью, массой, а иногда и сопротивлением). Эти методы развиваются в первую очередь для систем гидропрессов, в которых стремятся получить большие ускорения движущихся масс и не боятся ударов, и для гидропередач раздельного исполнения с длинными трубопроводами. Математический аппарат, используемый при этих исследованиях, весьма сложен, так как приходится решать дифференциальные уравнения в частных производных. Но они позволяют учесть распространенные волны давления по трубопроводу и выявить реакцию системы на высокочастотное возбуждение. Из-за математических трудностей решают пока частные задачи с ограниченным (один, два) количеством участков магистралей, в которых учитывается распределение жидкости по длине магистрали, для линейной модели гидросистемы [12, 27, 42, 45, 54, 58, 59, 64, 67].  [c.262]

Систему с распределенными параметрами — ротор с распределенной массой т (s) и жесткостью на изгиб EI (s) можно рассматривать как предельный случай ротора с п сосредоточенными массами при неограниченном возрастании п. Прогибы у, точек, к которым отнесены сосредоточенные массы, переходят в пределе в непрерывную функцию, устанавливающую закон распределения максимальных отклонений (амплитуд динамических прогибов), точек оси ротора от положения равновесия. Тогда интегральное уравнение (11) можно рассматривать как предельный случай системы п линейных дифференциальных уравнений с п неизвестными, и по аналогии с этой системой искать периодическое решение интегрального уравнения в виде  [c.142]

Том первый посвящен колебаниям линейных систем. Здесь формулируются и рассматриваются методы изучения колебательных процессов механических систем с конечным числом степеней свободы, а также систем с распределенными параметрами. Рассмотрены консервативные и неконсервативные системы, анализируются вопросы устойчивости решений.  [c.11]


Примером параметрически возбуждаемой электрической системы может служить пассивная линейная цепь с распределенными емкостью, индуктивностью и омическим сопротивлением, один из параметров которой (например, сосредоточенная емкость) периодически изменяется во времени.  [c.246]

При решении конкретных задач обычно ограничиваются только первыми двумя моментами распределения средним значением и корреляционной функцией. Основываясь только на этих двух простейших характеристиках случайного процесса, можно получить весьма простой математический аппарат и расчетные формулы для статистического анализа линейных систем с постоянными параметрами при стационарных возмущениях, Ясно, что при этом мы получаем приближенный метод, способный дать только оценки для общего случая. Теория, которая оперирует только первыми двумя моментами распределения (средним и корреляционной функцией), называется корреляционной теорией случайных процессов. Для случайных процессов с нормальным законом распределения этих характеристик вполне достаточно, так как они позволяют определить математические ожидания, дисперсии и моменты распределения для любых случайных величин x ,. . ., процесса x(t) при любых ii,. .. , tn, а затем определить и л-мерную функцию распределения. Это большое преимущество нормальных случайных процессов используется всюду, где только возможно и даже там, где случайные процессы не нормальны, но приближенно могут рассматриваться как нормальные, Для линейных систем с постоянными параметрами преимущество корреляционной теории усиливается еще и тем обстоятельством, что при подаче на ее вход нормального случайного процесса выход системы имеет также нормальный закон распределения.  [c.29]

Аналогичным образом были исследованы задачи об успокоении колебаний для линейных управляемых систем, описываемых волновым уравнением. Однако и этот путь связан с преодолением серьезных трудностей, поскольку в рассматриваемых случаях получается бесконечномерная проблема моментов и представляющий здесь основной интерес вопрос о возможности эффективной аппроксимации ее подходящей конечномерной проблемой пока еще далек от полного решения, а на общие вопросы об управляемости бесконечномерных систем скорее всего получаются отрицательные ответы. Упомянутый основной вопрос был исследован лишь в отдельных частных случаях, когда таким путем были получены значения оптимальных управляюш их воздействий как для задач программного управления, так и для отдельных проблем синтеза систем с обратной связью. Вообще задача об аппроксимации управляемых систем с распределенными параметрами подходящими конечномерными системами представляется весьма важной проблемой, разрешение которой открыло бы новые эффективные пути и для теоретического исследования и для конкретного численного решения. К сожалению, в литературе известно совсем мало результатов, относящихся к такому обоснованию. Помимо упомянутых выше исследований, связанных с использованием результатов, относящихся к проблеме моментов, и обоснованных пока лишь для отдельных частных случаев задач об управлении линейными параболическими и гиперболическими системами, можно упомянуть  [c.240]

Механические системы линейные с распределенными параметрами — Динамика статистическая — Методы 536—538  [c.554]

В машиностроении очень редко встречаются случаи, когда расчет вибраций того или иного конструктивного элемента может быть выполнен вполне точно. Как правило, технические расчеты являются приближенными. Основные допущения делаются при выборе расчетной схемы конструкции. При этом игнорируются несущественные особенности системы и выделяются лишь главные ее параметры, определяющие характер явления. Системы с распределенными массами заменяются во многих случаях при расчете системами с сосредоточенными массами, детали сложной геометрической формы (пружины, коленчатые валы и т. п.) обычно сводятся к эквивалентному прямому брусу, нелинейные упругие элементы часто заменяются эквивалентными линейными и т. д.  [c.386]

Предварительные замечания. Под упругими распределенными системами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы. В отличие от систем с сосредоточенными параметрами (с конечным числом степеней свободы п), динамическое поведение которых можно описать системой обыкновенных дифференциальных уравнений относительно обобщенных координат i/y (I) (/ = 1, 2,. .., а) (см. часть первую), поведение распределенных систем описывают дифференциальными уравнениями в частных производных относительно некоторых функций координат и времени. Распределенные упругие системы называют линейными, если они описываются линейными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется формулировка краевых условий.  [c.135]

Пример б. В качестве модели распределенной системы с наследственным трением рассмотрим стержень из стандартного линейного вязкоупругого материала, нагруженный мертвой силой <2 и следящей силой Р (см. рис. 7.3.11, г). После отделения времени при помощи подстановки (х, 1) = (х ) ехр(Х/) приходим к обобщенной задаче о собственных значениях относительно безразмерного характеристического показателя ц = А, / параметров нагрузки а и Р и параметров диссипации у и Г (1 + т)ц)Ж -1-(а-ьр)(1-1-ут 11)Ж -1-  [c.482]

Цифровое информационное устройство, кроме струнного преобразователя 6 (см. рис. П.2, а), включает ряд электронных блоков. Струнные преобразователи представляют собой автогенераторы, частота колебаний которых определяется параметрами струны—высокодобротной механической системы с линейно-распределенными параметрами, и поддерживается с помощью электронного усилителя 7 с положительной обратной связью. В качестве устройства, регистрирующего частоту автоколебаний струны, можно использовать обычный электронно-счетный частотомер 8 промышленного типа. Одновременно сигнал (частотно-модулированный, либо в виде последовательности дискретных импульсов) с выхода усилителя с положительной обратной связью может быть подан на ЭЦВМ 5 и на стабилизатор 10.  [c.318]

В соответствии с выражением (4.2.10) поле w(r) полностью определено, если оно задано вместе с производной по нормали на замкнутой поверхности, ограничивающей интересующий нас объем. Однако при этом мы еще не можем получить распределение поля. Действительно, чтобы воспользоваться выражением (4.2.10), должна быть известна функция Грина для конкретного закона изменения показателя преломления и конкретных граничных условий, определяемых рассеивающими объектами, диафрагмами и т. д. Формально мы можем рассматривать и и ди/дп на поверхности S как входные данные линейной системы, отклик которой w(r) дается интегралом (4.2.10). Следовательно, оптическую систему можно сравнить с черным ящиком, входными параметрами которого являются и и ди/дп , заданные на S, хотя, как мы покажем ниже, их нельзя варьировать независимо. При этом  [c.255]

НОРМАЛЬНЫЕ КОЛЕБАНИЯ (нормальные моды), собственные (свободные) гармонич. колебания линейных динамич. систем с пост, параметрами, в к-рых отсутствуют как потери, так и приток извне колебат. энергии. Каждое Н. к. характеризуется определ. значением частоты, с к-рой осциллируют все элементы системы, и формой — распределением амплитуд и фаз по элементам системы. Линейно независимые И. к., отличающиеся формой, но имеющие одну и ту же частоту, наз. вырожденными. Частоты Н. к. наз. собственными частотами системы.  [c.470]


При расчетах вибрационных машин часто возникает необходимость вычисления некоторых эквивалентных или приведенных значений позиционных, инерционных и днссипатнвных параметров системы. Такие задачи встречаются в трех различных ситуациях. Во-первых, когда упругие элементы или демпферы составляют последовательную, параллельную или смешанную группу, возникает необходимость подсчитать эквивалентное значение коэффициента жесткости или коэф [)Нцненга сопротивления группы. Во-вторых, в системах, где скорости (угловые скорости) ряда точек (или элементов) связаны постоянными передаточными отношениями, бывает целесообразно привести массы, моменты ииерции, коэффициенты жесткости и сопротивления к какой-либо одной точке или одному элементу без изменения принципиальной расчетной схемы машины. В-третьих, нахождение эквивалентных значений параметров становится необходимым в результате упрощения, иногда грубого, принципиальной расчетной схемы машины, например приведения системы с распределенными параметрами к системе с одной степенью свободы или приведение сильно нелинейной системы к линейной.  [c.163]

Характеристические показатели линейной системы с постоянными параметрами совпадают с собственными значениями линейного оператора этой системы. Если дискретизация системы выполнена на уровне выбора расчетной схемы или она оказалась результатом применении какого-либо метода к распределенной системе (например, метода конечных элементов, граничных элементов, конечных разностей, Бубнова -Галеркина и др.), то оператор системы будет конечномерным. В принятом базисе этому оператору соответствует некоторая матрица (см. уравнение (7.2.3)]. Свойства этой матрицы зависят от характера внещних воздействий. Напри-  [c.486]

Естественным методом приближенного решения задач об управлении системами с распределенными параметрами является замена соответствующих функциональных уравнений подходящими конечномерными разностными схемами. В результате получается задача об оптимальном управлении аппроксимирующей системой, описываемой уравнениями в конечных разностях или системой обыкновенных дифференциальных уравнений. Такие аппроксимирующие задачи, по крайней мере, если речь идет о линейных системах, оказываются эффективно разрешимыми, и тем самым доставляется возможность численного решения исходной проблемы. К сожалению, и здесь вопросы обоснования подобной конечноразностной аппроксимации исследованы еще недостаточно. Следует, наконец, отметить одно существенное обстоятельство, характерное для аппроксимации задач об управлении системами с распределенными параметрами и проявляющееся, в частности, уже в задачах об управлении системами с последействием. Пусть, например, речь идет об оптимальном программном управлении, обеспечивающем предельное быстродействие для бёсконечномерной системы при ограничении [[ м [<Л , и пусть эта система, аппроксимируется конечномерной системой, описываемой системой из п обыкновенных дифференциальных уравнений. В большинстве случаев для конечномерных систем условие максимума, фигурирующее в принципе максимума, не вырождается, т. е.- соответствующее выражение Н [ , X ), "ф, м] зависит фактически от и, и тем самым доставляется достаточная информация о значениях ( ). Вследствие этого невырожденного условия максимума оказывается, как правило, что эти значения лежат на границе области 7 ( гг [[<Л ), и их можно найти, зная вектор Ь). Далее, оказывается, однако, что если даже и устанавливается сходимость аппроксимирующих управлений м ( ) к оптимальному управлению и Ь) исходной системы при г -> оо, то в весьма широких случаях эта сходимость имеет достаточно нерегулярный характер и, в частности, аппроксимирующие оптимальные движения сходятся к оптимальному движению исходной системы подчас лишь как к скользящему режиму (хотя весьма нередки случаи, когда на деле этот предельный режим может осуществляться обыкновенным управлением и ( ), регуляризирую-щим, следовательно, данный скользящий режим). На языке принципа максимума это выражается в том, что соотношение, определяющее u (t) из условия максимума, при п оо вырождается (в пределе оно оказывается уже не зависящим от и) и его формальная запись для соответствующей исходной системы с распределенными параметрами имеет лишь относительное значение, поскольку оно не доставляет необходимую инфор-  [c.241]

Представление парогенерирующего канала как одномерной системы с распределенными параметрами, описываемой уравнениями (2-1) — (2-3), с учетом линейной зависимости удельного объема от энтальпии впервые сделано в МЭИ (Л. 109].  [c.43]

Свойства длинных линий с распределенными параметрами можно достаточно точно представить системой с сосредоточенными параметрами, имеющей большее число элементов. Для трубопровода этот переход выполнен на рис. 15. Сопротивление йц будет в данном случае линейным, так как оно является элементом цепи, приближенно воспроизводящим уравнения (1). Сопротивления Дц учитывают потери в трубопроводе, hi — гидравлические индуктивности — инерционность жидкости в трубопроводе, — коэффициент жесткости гидравлической емкости — сжимаемость жидкости с участием упругих свойств стенок трубопровода (остальные элементы те же, что и на рис. 4). Для выбранной на рис. 15 системы строится граф с выбранным на нем деревом (рис. 16) и граф распространения сигналов (рис. 17). Для подготовки программы для аналоговой электронно-вычислдтельной машины над полученным графом распространения сигналов выполнены линейные преобразования. На осно- -вании преобразованного графа распространения сигнала (рис. 18) составлена программа для аналоговой электронно-вычислительной машины (рис. 19). Эта программа дает электронную модель гидравлической системы с учетом распределенных параметров трубопровода. Этой программой необходимо заменить часть программы на рис. 14 между двумя нелинейными блоками перемножения БП и двумя линейными усилителями умножения на коэффициенты N. На рис. 14 в этой части программы дана модель гидравлической системы с сосредоточенными параметрами. Произведя  [c.49]

В теории автоматического управления описанный метод называют методом Л-разбиений. Очевидно, что этот метод применим к более широкому классу линейных систем, чем системы, описываемые уравнениями (7.2.9). Так, он пригоден и в том случае, когда уравнение относительно характеристических показателей имеет вид, отличный от - полинома. Типичный пример - линейные системы с запаздыванием, а также распределенные системы, с параметрами, не зависящими от времени. Для многих систем из этих классов удается получить уравнение типа р(Х)=0, левая часть которого - трансцендентная функция. Тогда левые части уравнений (7.2.19) тоже будут трансцендешпыми функциями ш.  [c.469]

Ззхмена интегрального уравнения упругого контакта тел системой линейных алгебраических уравнений (метод Фредгольма) эквивалентна допущению об удовлетворении условий совместности перемещений в конечном числе точек контакта. Последнее соответствует основе численных методов теории упругости — замене континуальной расчетной модели детали (тела) с непрерывным распределением параметров и бесконечным числом степеней свободы дискретной моделью, имеющей конечное число неизвестных.  [c.115]

В распределённых системах (см. Система с распредели ними параметрами) амплитуда и фаза колебаний зан 1 сят от пространственных координат. Линейные распре делённые колебат. системы характеризуются набороя нормальных частот и собств. ф-ций, к-рые описываю пространственное распределение амплитуд собст , 1 колебаний. Резонансные свойства (добротность) пределённых систем определяются не только собш затуханием, но и связью с окружающей средой, в и-ру происходит излучение части энергии колебаний, (электрич., упругих я др.). В распределённых сис№ мах, обладающих высокой добротностью ( 1  [c.310]

В.Н. Паймушина и В.Г. Демидова [218], В.Е. Чепиги [324, 325] и др., для каждого слоя в отдельности принимается система кинематических гипотез. Выбор такой системы определяется деформативными и геометрическими параметрами слоя и является достаточно широким — гипотеза о жесткой нормали, гипотеза прямой линии, гипотеза о линейном или нелинейном распределении всех компонент вектора перемещений по толщине слоя и др. В рамках этого подхода удается достаточно точно аппроксимировать поле перемещений для каждого слоя и описать тонкие эффекты [111, 115, 165], связанные с локальными особенностями деформирования отдельных слоев оболочки. Следует отметить, что порядок разрешающей системы дифференциальных уравнений при таком подходе зависит от числа слоев оболочки и быстро растет при увеличении этого числа, что ограничивает возможности ее практического использования. Кроме того, не всеща оказывается возможным удовлетворить условиям межслоевого контакта по поперечным касательным напряжениям. Отметим, наконец, что всякое изменение структуры пакета слоев требует изменения системы гипотез и, следовательно, модификации разрешающей системы дифференциальных уравнений и пересмотра процедуры ее численного интегрирования, что вносит в расчет дополнительные трудности. Возможно, поэтому в литературе практически отсутствуют публикации численных исследований напряженно-деформированного состояния многослойных оболочек (с числом слоев больше трех), выполненных в такой постановке.  [c.8]


Аналитическое решение уравнения (7.35) затруднено из-за сложного характера распределения функции (т, р, /), которая зависит от геометрии индукционной системы, частоты тока, электрофизических свойств материала загрузки. Поэтому задача оптимального управления для линейного цилиндра конечной длины решалась также численным методом с помощью цифровой модели. Если рассматривать нагрев цилиндра конечной длины в однородном магнитном поле, то зависит только от параметра т = = л/2 2/й, где б — глубина проникновения тока, т. е. от выраженности поверхностного эффекта. Проведенные расчеты показали, что на предельную достижимую точность нагрева (гр = Этах— 0ш1п) слабо влияет длина зоны равномерного распределения источников теплоты в средней части цилиндра. А это означает, что для цилиндров с длиной, превышающей диаметр, величина г 5 не зависит от длины цилиндра. Таким образом удается построить зависимость г от параметра в широком диапазоне изменения критерия В (рис. 7.6). Изменение мощности нагрева (Ро) оказывает слабое воздействие на г)з, особенно при небольшом уровне тепловых потерь (В1). При небольших резко снижается достижимая равномерность нагрева. Это объясняется тем, что распределение внутренних источников теплоты по длине становится почти равномерным и дополнительные тепловые потери с торцов заготовки не удается скомпенсировать за счет краевого эффекта цилиндра. Детальный анализ показал, что на величину яр характер распределения источников теплоты по радиусу оказывает пренебрежимо малое влияние по сравнению с распределением источников по длине. Поэтому графики рис. 7.6 могут быть перестроены относительно параметров ,1 (см. главу 5) или Кр [107], характеризующих неравномерность распределения источников теплоты по длине заготовки и однозначно связанных с параметрами т<г, при нагреве цилиндра в однородном поле. Значения коэффициентов, характеризующих такое распределение источников теплоты, которое обеспечивает высокое  [c.246]

При расчете систем типа IV количество свободных параметров составляет пять. В этом случае помимо угла между компонентами следует задать еще одну величину. В качестве такой величииы в программе принято распределение параметра С между компонентами, т. е. прн расчете системы типа IV конструктор задает значения величины С для каждого компонента, принимая во внимание, что С — i + Сг, где i и С, — хроматические параметры первого и второго компонента. Произведя преобразования формул (VH.l), (VU.2) и (VH.3), а также приняв во внимание условия равенства радиусов склеиваемых поверхностей, и в этом случае задачу удается свести к решению одного квадратного и трех линейных уравнений. Приводить коэффициенты этих уравнений ввиду их громоздкости не имеет смысла.  [c.383]

Из этого следует, что статистическая линеаризация оперирует с отрезком ряда (3.4) и, следовательно, в общем случае не может дать в принципе точного решения ни при каком законе распределения аргумента. Хотя методы статистической линеаризации не получили до настоящего времени строгого теоретического обоснования , во многих практических случаях они дают по сравнению с точными методами вполне удовлетворительную точность [9, 11, 34, 54, 59]. В работах [33, 54, 59] показано, что существует широкий класс нелинейных динамических систем, для которых приближенный метод расчета, основанный на применении только статистической линеаризации, соответствует физической картине явлений. Широко распространенный метод статистической линеаризации нелинейных динамических систем основан на двух предположениях 1) анализируемая нелинейная система близка к линейной, что дает возможность заменять бызынерционные нелинейные преобразования линейными 2) известен с точностью до параметров закон распределения вероятностей процессов на входе в нелинейный элемент, что дает возможность определить линейное преобразование, эквивалентное нелинейному по статистическим характеристикам. Эти предположения эквивалентны предположению о нормальности закона распределения вероятностей всего вектора фазовых координат нелинейной системы.  [c.150]


Смотреть страницы где упоминается термин Линейные системы с распределенными параметрами : [c.123]    [c.292]    [c.70]    [c.98]    [c.553]    [c.553]    [c.554]    [c.457]    [c.186]    [c.124]    [c.115]   
Смотреть главы в:

Основы прикладной теории колебаний и удара Изд.3  -> Линейные системы с распределенными параметрами



ПОИСК



Линейные параметры

Параметр распределения

Параметр системы

Распределение системы

Распределенная линейная

Система линейная

Система распределенная



© 2025 Mash-xxl.info Реклама на сайте