Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Результаты расчетов по программам оптимизации

РЕЗУЛЬТАТЫ РАСЧЕТОВ ПО ПРОГРАММАМ ОПТИМИЗАЦИИ  [c.220]

Указанное допущение и погрешности аппроксимации в ряде случаев приводят к значительным погрешностям при определении оптимального значения So (как правило — занижение). Поэтому предпочтительнее использовать ЭВМ. В этом случае программа оптимизации параметров протяжки и режима резания может составляться как дополнение к программе расчета протяжки. Задавая достаточно малый интервал изменения подачи So, например, шириной 0,005 мм, в результате расчета протяжки получаем массив So—io—/ч.к, который необходимо сократить, оставив в нем только те протяжки, которые при заданном So имеют минимальную длину режущей части р=1о+1ч.к- Затем следует определить параметр Я для каждого варианта протяжки, например, по зависимости Hi=Ho (l-t-/((Lpi—Lpo)), где Ио — параметр И, соответствующий минимальному р= ро К — эмпирический коэффициент.  [c.167]


Кроме получения глобального экстремума, этот метод позволил представить полную картину распределения расчетных затрат во всей области изменения оптимизируемых переменных. По вышеизложенной методике была разработана специальная программа, в которую вошли подпрограммы теплового, гидравлического, аэродинамического расчета и расчет суммарных затрат, а также подпрограмма поиска экстремума. Следует отметить, что результаты теплового расчета, т, е. расход топлива, скорости сред, непосредственно использовались в расчете функционала. Оптимизация водогрейных котлов проведена при различных режимах работы основного и пикового, при различных нагрузках, климатических условиях и ценах на жидкое топливо (от 10 до 20 руб/т).  [c.61]

Вторая часть комплекса программ служит для непосредственного расчета и оптимизации параметров элементов газовоздушных трактов ТЭС и включает в себя управляющий блок программ, позволяющий вести оптимизацию методом наискорейшего спуска [64]. Элементы, влияющие на выбор оптимальных параметров ТЭС турбина, котел, воздухоподогреватель, калорифер, дутьевой вентилятор, дымосос, золоуловитель, участки газовоздухопроводов, газоотводящая труба — включаются в программу в виде автономно оттранслированных процедур. При этом результаты обработки исходной информации по отдельной программе являются исходными данными для следующей части комплекса программ.  [c.111]

Количественная оценка и оптимизация проектных решений> являются сложной задачей. Трудности возникают уже на стадии сбора исходной информации для оценки. Например, заранее точно предсказать количество незапланированных запросов к базе данных практически невозможно. Проблематичным является определение на предпроектной стадии количества реализаций сегментов и записей базы данных (п. 1 табл. 3.14). Расчет потребной памяти на магнитных дисках может быть произведен довольно, точно по ряду формул. Однако этот параметр редко является основным критерием оптимизации. Наиболее существенной является оценка времени работы программы с базой данных. Попытки-применения аналитического, статистического и имитационного моделирования для таких оценок пока не дали удовлетворительных результатов. Поэтому зачастую использование эвристических приемов для оценки проектных рещений по структуре базы данных, близкой к оптимальной, дает результаты, не уступающие сложным моделирующим программам. Приемы такого рода также были учтены в п. 5—7 табл. 3.14.  [c.97]

В настоящей главе изучение движения простейшей модели снаряда в виде одномерного движения материальной точки обобщено на случай двух- и трехмерного движения. Отсюда естественно возникает проблема оптимизации траектории, которая оказывается тесно связанной с целым рядом смежных проблем. Простейшей задачей из этого круга проблем является задача определения оптимального управления, когда динамические характеристики снаряда заданы и требуется найти такую траекторию, которая оптимизирует некоторую заданную величину. Для случаев, когда поле сил зависит от скорости и координат снаряда, дана общая постановка задачи оптимизации траектории, а в случаях, когда силовое поле однородно или когда сила зависит от расстояния линейно, оказывается возможным получить решение в замкнутой форме. Это особенно важно в применении к баллистическим снарядам (нанример, снарядам дальнего радиуса действия класса земля — земля или носителям спутников), где расстояние, проходимое за время выгорания топлива, мало по сравнению с земным радиусом. Простой и в то же время почти оптимальной траекторией в этих случаях оказывается траектория гравитационного разворота при движении снаряда в плотной атмосфере и затем переход на траекторию, определяемую соотношением (2.6). Хотя точного решения уравнений движения по траектории гравитационного разворота не существует, все же можно построить ряд графиков, позволяющих во многих случаях подбирать требуемые значения параметров. Если ограничиться лишь получением решений, удовлетворяющих условию стационарности, то обычными методами вариационного исчисления можно исследовать те задачи оптимизации, в которых масса снаряда, программа скорости истечения и время выгорания, так же как и программа управления, являются варьируемыми функциями. Для того чтобы найти решения, являющиеся действительно максимальными или минимальными в определенном смысле, нужно проводить специальное исследование каждого отдельного случая, так как не всегда решение, удовлетворяющее требованию стационарности, является оптимальным, и наоборот. В тех задачах, где скорость истечения есть известная функция времени, как, например, это имеет место в жидкостных ракетных двигателях, из анализа следует лишь то, что оптимальной программой для М ( ) будет, как правило, программа импульсного сжигания топлива. Поэтому для получения практически интересных результатов необходимо проводить более глубокий анализ, с учетом таких факторов, как параметры двигателя, топливных баков и т. д., при одновременном учете характера траектории полета снаряда. Для выполнения такого рода анализа используется схема расчета, где анализ различных элементов Конструкции и групп уравнений (одной  [c.63]


Результаты расчетов по программам оптимизации для проекта конденсатора АЭС БРГД-1000 (низкотемпературный вариант). Система охлаждения — пруды-охладители, климатические условия — центр европейской части СССР  [c.221]

Результаты расчетов по программе оптимизации параметров регенератора АЭС БРГД-ЮОО  [c.225]

Важной особенностью разработанной методики является оптимизация параметров черновой обработки с учетом дискретного ряда значений чисел оборотов и подач. Погрешность расчета с помощью целочисленного симплекс-метода незначительна (не превышает 0,8%). В случае расчетов по программе нецелочисленного симплекс-метода разность между расчетными значениями и паспортными данными станка весьма существенна. Округление результатов, полученных нецелочисленным решением, до ближайших паспортных не дает оптимального варианта обработки. При использовании целочисленного симплекс-метода, согласно изложеннной выше методике, первоначально определяется сочетание подачи, скорости и глубины резания, дающее минимальные затраты при обработке единичного объема материала с учетом основного времени.  [c.60]

В табл. 5.8 представлены результаты расчетов локальных минимумов Ч к и Ч к для проекта другого (высокотемпературного) варианта АЭС БРГД-1000 при различных условиях охлаждения. В таблице даны значения глобальных и нескольких ближайших локальных экстремумов минимизируемых функций. Характерно, что этим экстремумам соответствуют примерно одни и те же оптимальные параметры. Однако, как правило, оптимизация по критерию Ч к дает несколько лучшие результаты, чем по критерию Ч к. Это объясняется тем, что в программе поиска с критерием Ч к (5.54) отсутствует нелинейное ограничение (5.18), которое, как показывают результаты табл. 5.8, является сильным притяжением при движении к цели в соответствии с принятой в настоящей работе стратегией поиска при наличии нелинейных ограничений.  [c.224]

Обработка результатов отсеивающего эксперимента осуществляется на ЭВМ по программе шагового регрессионного анализа [65], включающей исследование линейной и квадратичной модели с преобразованием координат в полулогарифмические, логарифмические и отно сительные (в качестве фактора принимают отношение содержаний мешающего и определяемого компонентов). На печать выводят среднее арифметическое значение параметра оптимизации экспериментальное значение дисперсии воспроизводимости значимые коэффициенты регрессии коэффициент множественной корреляции остаточную дисперсию табличное и эмпирическое значение критерия для проверки гипотезы адекватности моделей (F) погрешность предсказания по моделям. Уровень значимости при проверке гипотез и расчете погрешности предсказания принимают равным 0,05.  [c.96]

Создание новой методики или ее модификация, как правило, включают большой объем рутинной работы - подбор экспериментальных данных, проведение расчета и сравнение с экспериментом, проведение расчета по альтернативным методикам и сравнение результатов и т.д. После завершения апробации методики большгш часть вновь созданных программ становится бесполезной, а многократное дублирование подобного рода обслуживающих программ приводит к необоснованной перегрузке памяти ЭВМ. В этой ситуации естественно попытаться использовать симбиоз информационно-поисковых и расчетных систем как инструмент для автоматизации ручного труда. Действительно, система АВЕСТА включает базу данных с программами целевой выборки по различным критериям, широкий спектр расчетных методик, программы, реализующие режим сравнения с экспериментом, программы, позволякяцие проводить оптимизацию методик и, наконец, программы ввода и вывода информации.  [c.23]

В основу программы положены две методики расчета профилей методика канд. техн. наук С. И. Лашнева и упрощенная методика канд. техн. наук С. А. Лопатина. Первая методика позволяет решать общие задачи по оптимизации профиля, параметров установки изделия и инструментов на строгой математической основе, учитывающей все необходимые и достаточные условия, исключающие интерференцию профилей. При разработке программы в соответствии с этой методикой было учтено требование максимального расширения диапазона использования программы, для чего входные данные предусмотрено задавать в виде массива значений координат текущей точки профиля безотносительно к виду обрабатываемого инструмента. Массив координат точек при этом целесообразно использовать тот же, что и при решении задачи о расчете геометрических характеристик сечений и напряжений с дополнением некоторыми данными. В конечном результате расчеты исходного профиля и профиля инструмента для его обработки представляются частью общей задачи по выбору профиля поперечного сечения инструмента, обладающего оптимальными геометрическими характеристиками (жесткостью на изгиб и кручение, равномерным распределением напряжений на контуре и т. д.) и, кроме того, технологичного в изготовлении (под технологичностью изготовления при. этом понимается возможность обработки профиля без его искажений, вызванных подрезаниями и интерференцией обрабатываемой и обрабатывающей поверхностей). Такой общий подход необходим при разработке конструкций или модернизации инструмента, при его исследовании, при выборе допусков на изготовление и т. д., ибо в конечном счете все расчеты служат одной задаче — обеспечению выпуска высококачественного инструмента, повышению его эффективности.  [c.346]


Задание исходных данных с использованием интерактивной системы графического отображения представляет довольно трудоемкую по времени задачу подробного описания каждого узла и элемента в расчетной сетке конечных элементов, что составляет 65—70 % общего времени счета. Подпрограмма FEMPLOT минимизирует время, которое пользователь программы FEDSS тратит на поточечный и поэлементный анализ результатов. В процессе проектирования можно оптимизировать конструкции благодаря оперативному наблюдению результатов расчета и варьированию профиля концентрации примеси в приборах, который нельзя измерить экспериментально. Эта возможность была реализована в нескольких проектах, что повлекло за собой большие вычислительные затраты. Поэтому использование интерактивной системы графического отображения информации повышает инженерную продуктивность в результате уменьшения времени, снижения общих вычислительных затрат и усовершенствования организации памяти ЭВМ, необходимой для проведения оптимизации.  [c.316]

Формирование модели с помощью средств машинной графики освобождает от трудоемкой работы — скрупулезного определения всех узлов и элементов конечно-элементной структуры, на выполнение которой обычно уходцт 65 - 70 % всего времени моделирования. Программа FEMPLOT сокращает до минимума время, которое тратит пользователь пакета FIELDAY на просмотр результатов расчетов распределения изучаемых величин по уэ-лал/либо по элементам структуры. Возможности быстро просматривать результаты моделирования и выявлять такие характеристики в приборе, которые нельзя экспериментально измерить, позволяют разработчикам приборов оптимизировать конструкцию. Подобный режим работы значительно сокращает объем конструкторских работ, выполняемых с большими затратами ресурсов. Таким образом, использование интерактивной графики повышает производительность инженерного труда за счет сокращения времени на разработку, уменьшения стоимости исследований и наличия добавочных средств оптимизации изделий.  [c.477]

Конструктор комплекса ПА-6 планирует состав и структуру загрузочного модуля рабочей программы РП, используя для этого возможности управляющих предложений и механизм автовызова редактора связей ОС ЕС. Источниками подпрограмм, из которых компонуется рабочая программа, являются временная библиотека объектных модулей 3 и постоянные библиотеки 4 (подпрограмм моделей элементов подпрограмм методов интегрирования, много-вариаитного анализа и параметрической оптимизации подпрограмм внешних воздействий на проектируемый объект подпрограмм расчета выходных параметров по результатам моделирования управляющих и сервисных подпрограмм и т. п.).  [c.143]

Комплексная стандартизация (КС). По определению, данному Постоянной Комиссией СЭВ по стандартизации, — это стандартизация, при которой осуществляется целенаправленное и планомерное установление и применение спстемы взаимоувязанных требований как к самому объегсту КС в целом и его основным элементам, так и к материальным и нематериальным факторам, влияющим на объект, в целях обеспечения оптимального решения конкретней проблемы. Следовательно, сущность КС следует понимать как систематизацию, оптимизацию и увязку всех взаимодействующих факторов, обеспечивающих экономически оптимальный уровень качества продукции в требуемые сроки. К осиовн лм факторам, определяющим качество машин и других изделий, эффективность их производства и эксплуатации, относятся совершенство конструкций и методов проектирования и расчета машин (их составных частей н деталей) на прочность, надежность и точность качество применяемого сырья, материалов, полуфабрикатов, покупных и получаемых по кооперации изделий степень унификации, агрегатирования и стандартизации уровень технологии и средств производства, контроля и испытаний уровень взаимозаменяемости, организации производства и эксплуатации машин квалификация рабочих и качество их работы. Для обеспечения высокого качества машин необходима оптимизация указанных факторов и строгая взаимная согласованность требований к качеству как при проектировании, так и на этапах производства и эксплуатации. Решение этой задачи усложняется широкой межотраслевой кооперацией заводов. Например, для производства автомобилей используют около 4000 наименований покупных и кооперируемых изделий и материалов, тысячи видов технологического оборудования, инструмента и средств контроля, изготовляемых заводами многих отраслей промышленности. КС позволяет организовать разработку комплекса взаимоувязанных стандартов и технических условий, координировать действия большого числа организаций-исполнителей. Задачами разработки и выполнения программ КС являются 1) обеспечение всемерного повышения эффективности общественного производства, технического уровня и качества продукции, усиление режима экономии всех видов ресурсов в народном хозяйстве 2) повышение научно-технического уровня стандартов и их организующей роли в ускорении научно-технического прогресса на основе широкого использования результатов научно-исследовательских, опытно-конструкторских работ и лучших оте-  [c.59]


Смотреть страницы где упоминается термин Результаты расчетов по программам оптимизации : [c.38]    [c.254]    [c.118]    [c.11]   
Смотреть главы в:

Быстрые реакторы и теплообменные аппараты АЭС с диссоциирующим теплоносителем  -> Результаты расчетов по программам оптимизации



ПОИСК



Оптимизация

Программа

Результаты расчетов



© 2025 Mash-xxl.info Реклама на сайте