Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возбуждение колебаний под действием силы

Возбуждение колебаний под действием силы  [c.167]

Явление резонанса. В системе при возбуждении колебаний под действием периодически изменяющейся внешней силы амплитуда колебаний сначала постепенно увеличивается . Через некоторое время после начала действия переменной силы устанавливаются вынужденные колебания с постоянной амплитудой и с периодом, равным периоду внешней силы (рис. 217).  [c.219]

Силы возбуждения. 1. Периодическое возбуждение создается под действием сил инерции движущихся частей механизмов, как,.например, показано на фиг. 26, а, где при вращении неуравновешенной массы реакция в точке закрепления О периодически изменяет свое направление и дает изменяющуюся по синусоиде составляющую в направлении колебаний.  [c.347]


Аналитический метод оценки вертикальной реакции при вихревом возбуждении колебаний. Под действием установившегося потока и срыва вихрей модель секции пролетного строения моста подвергалась воздействию подъемных сил, связанных с автоколебаниями и вызываемых вихревым возбуждением. Используя обозначения подразд. 6.5 и принимая, что вертикальные и крутильные формы колебаний не являются связанными за счет аэродинамических факторов, уравнение движения поперечного сечения можно записать в виде  [c.231]

На рис. II.5 приведена схема измерения, в основе которой лежит весовой метод. Неподвижный конец струн 1 я 2 жестко закреплен в корпусе 4 прибора. Вторые концы струн закреплены на коромысле 6, имеющем возможность поворачиваться под действием силы Р на упругом шарнире 5. К коромыслу жестко прикреплен стержень 7 с цилиндрическим диском 8 на конце. Струны помещены в поле постоянных магнитов 3 для возбуждения незатухающих колебаний.  [c.323]

Периодическое возбуждение создаётся под действием давления газов или паров (фиг. 19, ), как это в сочетании с силами инерции имеет место в поршневых двигателях и компрессорах, где такое возбуждение является причиной возникновения крутильных и изгибных колебаний валов двигателей.  [c.251]

Вместе с возникновением резонанса п-го рода в потенциально автоколебательной системе под действием возмущающей силы могут возникнуть интенсивные колебания с частотой, весьма близкой к частоте свободных колебаний системы, н слабо заметные вынужденные колебания. Весь колебательный процесс с физической стороны при этом будет квазипериодическим. Это явление называется асинхронным возбуждением.  [c.306]

Полосатые спектры можно возбуждать также, заставляя газ светиться под действием соответствующего освещения (флуоресценция). Наиболее хорошо исследованы спектры двухатомных молекул. Многоатомные молекулы представляют собой обычно гораздо менее прочные соединения,так как многообразие взаимных вращений и колебаний отдельных частей такой молекулы открывает большое число возможностей распада. Поэтому возбуждение интенсивного спектра многоатомных молекул затруднительно. Вместе с тем спектры многоатомных молекул значительно сложнее, и для различения важных деталей требуется применение спектральных приборов особенно большой разрешающей силы. Совокупность обоих обстоятельств — малая интенсивность и необходимость применения приборов большого разрешения — очень затрудняет исследование спектров испускания многоатомных молекул. Приходится ограни-  [c.744]

Неравенство (213.2) вполне соответствует квантовым свойствам обсуждаемой модели. Действительно, ротационная энергия молекулы связана со сравнительно медленными вращениями тяжелых ядер и не превышает обычно 4-10" Дж (1/А, л 20 м ). Колебания ядер, происходящие под действием межатомных сил, связывающих атомы в молекулу, происходят со значительно большей частотой им соответствует энергия около 200 10" Дж (1/ л 1000 см ). Наконец, для возбуждения электронных переходов требуется энергия того же порядка, как и для аналогичного процесса в атоме, т. е. 5000-10- " Дж (1/Я, 25 000 см ).  [c.747]


Как мы убедились, под действием внешней силы в случае резонанса в системе возбуждаются стоячие волны, по характеру распределения амплитуд близкие к тому из нормальных колебаний системы, частота которого совпадает с частотой внешнего воздействия. В других случаях возбуждения интенсивных колебаний в сплошной системе дело обстоит аналогичным образом. Так, в случае параметрического возбуждения колебаний ( 152) интенсивные колебания возникают, когда частота колебаний ножки камертона вдвое больше одного из нормальных колебаний струны, и распределение амплитуд колебаний будет такое же, как для соответствующего нормального колебания струны на струне укладывается половина синусоиды , целая синусоида , полторы синусоиды и т. д.  [c.692]

Магнитное взаимодействие заключается во взаимном притяжении и отталкивании ферромагнитного материала и проводника (катушки) с переменным электрическим током. Например, под действием постоянного магнитного ноля изделие намагнитится. Катушка с переменным током будет притягиваться и отталкиваться от него в зависимости от направления образовавшегося в ней магнитного поля. Притяжение и отталкивание катушки будет оказывать обратное механическое действие на изделие, что приведет к возбуждению упругих колебаний на его поверхности. Возникающие при этом силы будут поверхностными, поскольку магнитный полюс образуется на поверхности изделия. Прием упругих колебаний будет происходить в результате того, что поверхность изделия будет приближаться и удаляться от катушки, изменяя в ней магнитное поле, что в свою очередь приведет к возникновению электрического тока в катушке.  [c.69]

Следовательно, в этом частном случае механизм под действием пульсирующей силы совершает гармонические колебания, амплитуда которых зависит от амплитуды пульсации, параметров механизма и соотношения между частотой возбуждения и частотой свободных колебаний, причем эти колебания происходят около положения статического равновесия.  [c.124]

Для получения поперечных амплитуд смещения на излучателе-пластине возбуждение его осуществлялось продольной силой стержневого магнитостриктора, действующей под углом к срединной плоскости пластины [6, 7]. Экспериментально установлено, что в нашем случае пластина, возбуждаемая действующей под углом силой Р, изменяющейся во времени по гармоническому закону, колеблется практически с одинаковой амплитудой смещения по ширине. Этим определяется задача о колебании с одной пространственной переменной X,  [c.236]

Продольная сила возбуждает в пластине продольные колебания, поперечная сила, возбуждая изгиб-ные колебания, снижает порог динамической устойчивости ее. Схема возбуждения колебаний в наклонном излучателе показана на рис. 8.18. Решение задачи состоит в совместном рассмотрении продольных и изгибных колебаний пластины с целью обнаружения влияния на динамическую устойчивость ее величины угла, под которым действует возбуждающая сила.  [c.236]

При пайке алюминия и его сплавов чаще всего используются оловянно-цинковый (90% олова и 10% цинка) или оловянно-кадмиевый припой. Оловянно-цинковый припой вызывает наименьшую электролитическую коррозию основного металла. На механизм ультразвуковой пайки большое влияние оказывает возникающая в расплавленном припое кавитация. Рабочий стержень ультразвукового паяльника, нагреваемый от обычного теплового элемента, расплавляет припой, который затем растекается по поверхности спаиваемого шва. При возбуждении ультразвуковых колебаний стержня паяльника в силу мощных гидравлических ударов, образующихся при захлопывании кавитационных пузырьков, окисная пленка разрушается и расплавленный припой получает доступ к чистой поверхности основного металла, что обеспечивает хорошее качество спая (фиг. 32). Наибольшая эффективность процесса получается при низкочастотных ультразвуковых колебаниях, так как интенсивность кавитации повышается при уменьшении частоты. Поэтому для возбуждения ультразвуковых колебаний при пайке используются магнитострикционные вибраторы. Для того чтобы стержень паяльника не разрушался под действием кавитации, он должен быть прочнее окисной пленки. Поэтому рекомендуется изготовлять его из сплава серебра с никелем или покрывать слоем хрома.  [c.909]

Возбуждение колебаний параметрическое 359 -Области 360 - Поперечные колебания однородной балки под действием продольной сжимающей силы 360 - Схемы 359  [c.606]

Поскольку камеры сгорания вибрируют в основном под действием аэродинамического возбуждения, то приведенное сравнение косвенным образом подтверждает существование аналогичных аэродинамических сил, вызывающих вибрацию ЗР РОУ. Интенсивность вибрации определяется жесткостью ЗР, числом и системой расположения опор. Проведенные испытания показали, что жесткость экрана РОУ невелика, а зазоры в опорах допускают значительную амплитуду колебания ЗР.  [c.153]

Периодическое возбуждение создаётся под действием сил инерции движущихся частей механизмов, как, например, показано на фиг. 19, а. где при вращении пеуравновещенной массы /Иц реакция в точке закрепления О периодически изменяет своё направление и даёт изменяющуюся по синусоиде составляющую в направлении колебаний.  [c.250]


Коэффициент динамичности но перемещению К дин, А д — величина, равная отношению амплитуды А гармонических вынужденных колебаний к статическому перемещению под действием силы, равной амплитуде силового гар.мо1Шческого возбуждения или амплитуде кинематического гармонического возбуждения.  [c.145]

Рассмотрим балку, возбуждение колебаний в которой происходит не под действием силы f(x), а вследствие заданных перемещений опор. Этот случай реализуется при установке балки на электродинамический вибратор. При указанном типе возбуждения колебаний одна или более граничных точек системы балка — настроенный демпфер (см. рис. 5.6) колеблется, совершая периодические вертикальные перемещения с амплитудой Wo. Пусть IFoTH — амплитуда относительного перемещения произвольной точки X балки относительно ее конца или концов.  [c.222]

Один из них [12] основан на возбуждении продольных колебаний ультразвуковой частоты в металлическом цилиндре, на торец которого нанесено покрытие. Когда силы, возникаюгцие в покрытии под действием ускорения, вызываемого колебаниями ультразвуковой частоты (равного произведению квадрата частоты на амплитуду колебаний), превышают силы сцепления на поверхности раздела, покрытие отделяется от поверхности металла. Измеряя частоту со и амплитуду а колебаний и зная размеры поверхности раздела 5, толш ину покрытия б и плотность с1 материала покрытия, вычисляют силу, вызываюш,ую отрыв покрытия, по уравнению  [c.41]

Впервые ёще М. Фарадей [51 (1831 г.) экспериментально наблюдал и исследовал параметрические колебания. Затем G. Мельде [6] (1859 г.), наблюдая колебания струны, цатянутой между двумя противоположными точками звучащего колокола, пришел к мысли об экспериментальном изучении возбуждений колебаний в натянутой тонкой струне, один из концов которой был жестко закреплен, а другой прикреплен к колеблющемуся камертону. Движение точки прикрепления тpyнь совпадало с направлением оси струны, а период поперечных колебаний струны был вдвое больше периода колебаний камертона. Первое теоретическое объяснение явления параметрического резонанса было дано Дж. Реле м [7] (1883— 1887 гг.). Релей рассмотрел ряд задач о параметрическом возбуждении колебаний механических систем (качелей, струны), не затрагивая вопроса о вынужденных колебаниях в системе с переменными параметрами под действием внешней силы.  [c.6]

РЕАКЦИЯ [термоядерная — реакция слияния легких атомных ядер в более тяжелые, происходящие при высоких температурах 10 К фотоядерная- -расщепление атомных ядер гамма-квантами цепная — реакция деления атомных ядер тяжелых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления ядерная — превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, в том числе с гамма-квантами, или друг с другом] РЕВЕРБЕРАЦИЯ — процесс постепенного затухания звука в закрытых помещениях после окончания действия его источника РЕЗОНАНС (есть явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынужденной силы к собственной частоте колебаний системы акустический — избирательное поглощение энергии фононоБ определенной частоты в парамагнитных кристаллах, помещенных в постоянное магнитное поле антиферромагнитный — избирательное поглощение энергии электромагнитных волн, проходящих через антиферромагнетик, при определенных значениях частоты и напряженности приложенного к нему магнитного поля гигантский — широкий максимум, которым обладает зависимость сечения ядерных реакций, вызванных налетающей на атомное ядро частицей или гамма-квантом, от энергии возбуждения ядра магнитный — избирательное поглощение энергии проходящих через магнетик электромагнитных волн на определенных частотах, связанное с переориентировкой магнитных моментов частиц вещества параметрический — раскачка колебаний при периодическом изменении параметров тех элементов колебательных систем, в которых сосредоточивается энергия колебаний)  [c.271]

В более общей постановке задача может быть сформулнрована следующим образом. Пусть непараметрическая система с п степенями свободы, описываемая, вообще говоря, связанными обобщенными координатами х , х ,. .х , совершает вынужденную вибрацию под действием периодического возбуждения, которое описывается обобщенной силой, соответствующей одной из обобщенных координат. Пусть далее необходимо максимизировать интенсивность колебаний k-й координаты путем нахождения той из обобщенных координат, соответствие которой обобщенной силе обеспечивает названную максимизацию. Интенсивность колебаний может быть выражена, например, среднеквадратическим значением й-й координаты, отсчитываемой от ее среднего значения, а в случае линейной системы и синусоидальной обобщенной силы — амплитудным значением указанной координаты.  [c.158]

Под действием гармонической вынуждающей силы, кроме основных колебаний с частотой возбуждения р и супергармонических колебаний, в системе с нелинейной упругой характеристикой могут также происходить субгармонические колебания с частотами ф/и (л - целое число). Эти колебания могут возникать при относительно больших частотах возбуждения, причем их амплитуды могут превосходить амплитуды первой гармоники. Наличие и интенсивность субгармонических колебаний зависят от параметров демпфировакля гак, для рассматриваемой системы при увеличении к амплитуды субгармонических колебаний уменьшаются и при некотором значении Ы полностью исчезают.  [c.371]

Генераторы переменного тока имеют ряд преимуществ по сравнению с генераторами постоянного тока. Ротор генератора переменного тока может вращаться с большей угловой скоростью, чем якорь генератора постоянного тока. При большой угловой скорости якоря генератора постоянного тока ухудшается контакт между щетками и ламелями коллектора вследствие колебаний щеток при скольжении по неровному коллектору. Кроме того, под действием центробежных сил при большой угловой скорости возможен выход обмоток из пазов якоря. Щетки обмотки возбуждения генератора переменного тока скользят по сплошному кольцу, поэтому возможна работа с большей угловой скоростью, а обмотка возбуждения надежно закреплена под полюсами. 0 позволяет увеличить передаточное число в приводе от коленчатого вала двигателя к генератору, а следовательно, напряжение на клеммах генератора переменного тока достигает йоминаль-ной величины при меньшей угловой скорости коленчатого вала, чем в генераторах постоянного тока. При этом уменьшается йродолжи-тельность питания потребителей током аккумуляторной батареи, улучшаются условия ее работы, а срок службы увеличивается. Щеточный узел генератора переменного тока более долговечен так как щетки работают по сплошному кольцу и через них проходит лишь ток возбуждения. У генератора постоянного тока щетки работают по коллектору, состоящему из отдельных ламелей, а через щетки проходит ток нагрузки генератора. Таким образом, генераторы переменного тока являются более надежными, а объем их технического обслуживания меньше, чем у генераторов постоянного тока. Кроме того, генераторы переменного тока при той же мощности имеют меньшие габаритные размеры и вес по сравнению с генераторами постоянного тока.  [c.98]


Регуляторы напряжения обеспечивают поддержание напряжения в заданных пределах при изменении частоты вращения якоря и нагрузки генератора. Каждый регулятор имеет шунтовую и компенсирующую обмотки. При увеличении напряжения генератора до величины, на которую произведена регулировка реле, якорь его притягивается к сердечник -, размыкая контакты и включая добавочное сопротивление в обмотку возбуждения генератора, в которой при этом у.меньшается сила тока, а с ней и магнитный поток. В результате напряжение на зажимах генератора падает, вновь уменьшая силу тока в шунтовой обмотке реле. Магнитный поток, создавае.мый этой обмоткой, уменьшается, и под действием возвратной пружины якорь вновь замкнет контакты реле. Этот процесс все вре.мя повторяется при работе генератора, и якорь регулятора напряжения непрерывно вибрирует, замыкая и размыкая контакты. Напряжение, поддерживаемое таким регулятором, зависит от соотношения в.ремени замкнутого и разомкнутого состояния контактов. При увеличении частоты вращения генератора увеличивается время разомкнутого состояния контактов и, наоборот, с уменьшением частоты — увеличивается относительное вре.мя замкнутого состояния контактов реле. Для увеличения частоты вибрации якоря регулятора и уменьшения тем самым амплитуды колебания напряжения шунтовая обмотка регулятора напряжения в момент размыкания контактов соединяется последовательно с так называемым ускоряющим сопротивлением (Ry), чем обеспечивается резкое снижение напряжения на этой обмотке и быстрое замыкание контактов.  [c.133]

В технике звукоприемниками обычно служат микрофоны (см.), трансформирующие акустич. колебания в электрические, к-рые затем подаются в ламповые усилители (см.). Последние имеют целью довести амплитуду электрич. колебаний до требуемой величины. Микрофоны разделяются по способу возбуждения на приемники колебательного давления (когда действующая на микрофон сила пропорциональна избыточному давлению в звуковой волне) и приемники градиента давления (действующая сила пропорциональна градиенту колебательного давления). Последние иногда называют также приемниками колебательной скорости или движения (Шустер [ ]). Приемники давления суть звукоприемники нулевого порядка, не обладающие направленностью (фиг. 7а) на высоких частотах (где размеры микрофона приближаются к длине волны) дифракция 3. на микрофоне создает довольно значительную направленность. Приемники градиента давления являются звукоприемниками первого порядка соответствующая характеристика направленности (фиг. 76) сохраняется вплоть до самых высоких частот рабочего диапазона (Браунмюль и Вебер) [i ]. Условие отсутствия в рабочем диапазоне частотных искажений (прямолинейность частотной характеристики) требует для каждого типа микрофона согласования его акустич., электрич. и механич. свойств. Так, конденсаторный микрофон, сконструированный как приемник давления, должен работать в режиме управления упругостью. Тот же микрофон как приемник градиента давления должен управляться затуханием ленточный (электродинамич.) микрофон как приемник градиента  [c.246]

Посмотрим теперь, что произойдет, если свободному концу веревки сообщить быстрое отрывистое движение, длительность которого во много раз меньше периода первой формы колебаний веревкп. Мы могли бы ожидать возникновения свободных колебаний веревки нескольких форм (возможно, и очень высоких). На самом же деле оказывается, что возбуждение, сообщаемое веревке, наблюдается в виде волны , бегущей вдоль веревки. Волна достигает закрепленного конца веревки и, отражаясь от него, вновь возвращается к руке, где снова отражается и т. д., до тех пор, пока окончательно не затухнет под действием внутренних сил трения веревки.  [c.117]

Висячие и вантовые мосты следует рассчитывать таким образом, чтобы они могли противостоять силам лобового сопротивления, соответствующим средней скорости ветра. Но такие мосты также восприимчивы к различным аэроупругим эффектам, которые включают дивергенцию (или поперечную потерю устойчивости), вихревые возбуждения колебаний, флаттер, галопирование и бафтинг, сопровождаемый автоколебаниями. Исследование этих явлений возможно лишь на основе данных испытаний в аэродинамической трубе. Различные виды таких испытаний кратко описаны в подразд. 8,4.1. Методики анализа чувствительности поперечных сечений балок жесткости висячих мостов к аэроупругому взаимодействию с воздушным потоком и соответствующие им соображения по расчету представлены в подразд. 8.4.2- 8.4.б. Краткий обзор исследований работы висячих и вантовых мостов под действием ветра включен в подразд. 8.4.7.  [c.225]

Электродинамическое взаимодействие состоит в возбуждении в токопроводяш,ем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. На рис. 1.28 вихревые токи, индуцируемые в ОК катушкой 2 с переменным током, направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности ОК. В результате в ОК возбудится поперечная волна. Обратный эффект состоит в возбуждении вихревых токов в металле, колеблющемся в постоянном магнитном поле под действием упругих волн. Эти вихревые токи индуцируют переменный ток в катушке 2, которая в данном случае служит приемником.  [c.68]

Магнитное взаимодействие состоит во взаимном притяжении и отталкивании ферромагнитного материала и проводника (катушки) с пере.менным электрическим током. Например, под действием постоянного магнитного поля В изделие намагнитится. Катушка с переменным током. будет притягиваться и отталкиваться от него в зависимости от направления образовавшегося в ней магнитного поля. Притяжение и отталкивание катушки приведет к возбуждению упругих колебаний поверхности изделия. Вазникающие при этом силы будут поверхностными, поскольку магнитные полюса образуются на поверхности изделия. Прием упругих колебаний будет  [c.68]

По аналогии с пьезоэлектрическим зондом Коппельман [33101 описывает также и магнитострикционный зонд (фиг. 179, б). Здесь тонкая никелевая проволока вклеена своим передним концом в резиновую или пластмассовую оболочку. На свободном конце проволоки располагается небольшая катушка индуктивности. Под действием звуковых волн в проволоке возбуждаются продольные колебания, что приводит к возникновению переменной э. д. с. в катушке. Поскольку продольные колебания в проволоке возбуждаются в основном в пучностях давления, постольку такой микрофон является чистым приемником давления, способным работать на частотах до нескольких мегагерц. Обычно для возбуждения в катушке в силу обратного магнитострикционного эффекта переменной э. д.- с. достаточно остаточного магнетизма в никелевой проволоке тем не менее при точных измерениях нетрудно осуществить подмагничивание проволоки от внешнего магнитного поля. При помощи двух расположенных рядом друг с другом никелевых зондов (фиг. 179, в) можно реализовать также и приемник градиента давления. Легко понять, что на обеих проволоках устанавливаются стоячие волны поэтому, перемещая катушку по проволоке, можно так подобрать относительные амплитуды и фазы индуцируемых в них напряжений, что при определенном положении зонда в звуковом поле снимаемое с микрофона результирующее напряжение обращается в нуль.  [c.154]

Если интенсивность падающего света мала, в в-ве происходит спонтанное рассеяние света, обусловленное изменением движения микрочастиц в-ва под влиянием только поля падающей волны (см. Комбинационное рассеяние света, Мандельштама — Бриллюэна рассеяние). Интенсивность рассеянного излучения в 1 см в этом случае составляет лишь 10 —10 от интенсивности падающего света. При очень большой интенсивности падающего света проявляются нелинейные св-ва среды (см. Нелинейная оптика). На её микрочастицы действуют силы не только с частотой (О падающего излучения и с частотой (о рассеянного излучения, но также сила, действующая на разностной частоте А(о, равной частоте собств. колебаний микрочастиц, что приводит к резонансному возбуждению этих колебаний. Напр., рассмотрим вынужденное комбинационное рассеяние с участием внутримол. колебаний атомов. Под влиянием суммарного электрич. поля падающего и рассеянного излучений молекула поляризуется, у неё появляется электрич. дипольный момент, пропорциональный суммарной напряжённости электрич. поля падающей и рассеянной волны. Потенц. энергия ат. ядер при этом изменяется на величину, пропорциональную произведению дипольного момента на квадрат напряжённости суммарного электрич. поля. Вследствие этого внеш. сила, действующая на ядра, содержит компоненту с разностной частотой А со, что вызывает резонансное возбуждение колебаний атомов. Это приводит к увеличению интенсивности рассеянного излучения, что вновь усиливает колебания микрочастиц, и т. д. Таким образом, сам рассеянный свет стимулирует (вынуждает) дальнейший процесс рассеяния. Именно поэтому такое рассеяние наз. вынужденным (стимулированным). Интенсивность В. р. с. может быть порядка интенсивности падающего света. (О В. р. с. Мандельштама — Бриллюэна см. в ст. Мандельштама — Бриллюэна рассеяние.)  [c.96]



Смотреть страницы где упоминается термин Возбуждение колебаний под действием силы : [c.40]    [c.313]    [c.416]    [c.363]    [c.331]    [c.254]    [c.130]    [c.130]    [c.249]    [c.360]    [c.439]    [c.247]    [c.298]    [c.724]   
Смотреть главы в:

Демпфирование колебаний  -> Возбуждение колебаний под действием силы



ПОИСК



Возбуждения

КОЛЕБАНИЯ Возбуждение

Колебания Силы возбуждения



© 2025 Mash-xxl.info Реклама на сайте