Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние статического предварительного нагружения

Влияние статического предварительного нагружения  [c.112]

Влияние статического предварительного нагружения на динамические свойства материалов обычно наиболее заметно в области резиноподобных материалов (рис. 3.8). При этом модуль упругости растет с ростом предварительной нагрузки, тогда как коэффициент потерь уменьшается.  [c.112]

Таким образом, уравнение (5.50) учитывает то обстоятельство, что приращение повреждения за каждый цикл есть функция не только действующих факторов, но и предварительного повреждения, внесенного в материал к рассматриваемому моменту времени, т, е. учитывает предысторию нагружения. Следует указать, однако, что особенности неизотермического термоусталостного нагружения и, в частности, различная величина энергии деформирования в полуциклах растяжения и сжатия требуют более подробного анализа влияния статической нагрузки.  [c.129]


При статическом нагружении дефекты увеличивают опасность хрупкого разрушения. Как и в других случаях, наиболее опасны острые трещиноподобные дефекты трещины, непровары, подрезы. Опасность дефектов усиливается при пониженной температуре (особенно ниже -60 °С), при предварительном нагружении материала детали внешними или сварочными напряжениями, при повышенном содержании углерода и при увеличенном поглощении водорода. Когда материал соединения обладает большим запасом вязкости, основное влияние на прочность ока Зывает относительная величина дефекта. В ряде случаев (для сравнительно малонагруженных соединений из пластичных материалов) безопасное ослабление стыкового шва может достигать 30 %.  [c.340]

Рис. 7.43. Влияние предварительного статического нагружения в осевом направлении на кривую усталости образцов из 7075-Т6, испытанных на усталость при изгибе с вращением. (Данные из работы [35].) J — радиус скругления в вершине выточки меньше 0,001 дюйма 2 — образцы без предварительного нагружения предварительное растяжение в процентах от предела прочности образца с выточкой 0 90%, 70%, И50%, предварительное сжатие в процентах от предела Рис. 7.43. Влияние предварительного статического нагружения в осевом направлении на кривую усталости образцов из 7075-Т6, испытанных на усталость при изгибе с вращением. (Данные из работы [35].) J — радиус скругления в вершине выточки меньше 0,001 дюйма 2 — образцы без предварительного нагружения предварительное растяжение в процентах от предела прочности образца с выточкой 0 90%, 70%, И50%, предварительное сжатие в процентах от предела
Рис. 5.7. Влияние частоты циклического нагружения на относительное изменение температуры образцов из стали с 0,74% С (закалка от 700 С, отпуск при 600 °С и предварительная статическая Деформация 5%) при ступенчатом нагружении Рис. 5.7. Влияние частоты циклического нагружения на относительное изменение температуры образцов из стали с 0,74% С (закалка от 700 С, отпуск при 600 °С и предварительная статическая Деформация 5%) при ступенчатом нагружении
Рассматривая принципы проектирования автомобиля, можно установить, что при расчете на усталостную прочность имеется значительно больше взаимозависимостей между нагрузками и показателями прочности, чем при расчете на статическую прочность. Основная трудность заключается в кумулятивном влиянии нагрузок на усталостную прочность и зависимость ее от всего процесса -нагружения, в то время как статическая прочность не зависит от предварительного нагружения. Связь между усталостной прочностью и сроком службы деталей может быть установлена лишь для конкретных условий эксплуатации.  [c.4]

Определение прочности сварных образцов при статической нагрузке в условиях, когда возможно их хрупкое разрушение (при высокой концентрации напряжений и низкой температуре), было проведено Институтом электросварки им. Е. О. Патона [27]. Испытанию подвергались образцы, показанные на фиг. 30. Часть образцов до испытания подвергались предварительному растяжению. Испытание при температуре Т = —60° С показало, что предел прочности при наличии резкой концентрации напряжений снижается. При этом образцы, подвергнутые начальному растяжению, производимому при нормальной температуре, имели более высокую прочность, чем образцы, разрушение которых при низкой температуре производилось без предварительного нагружения. Исследования, проведенные Институтом электросварки, прежде всего указывают не на влияние остаточных напряжений, а на большое значение концентраторов напряжений в условиях хрупкого разрушения. В этих условиях предварительное нагружение конструкций, производимое при нормальной температуре, способствует повышению их работоспособности. Объяснить это можно тем, что местные пластические деформации, появляющиеся при предварительном растяжении в наиболее опасном для прочности участке с высокой концентрацией напряжений, сглаживают резкость изменения формы, что приводит  [c.97]


При этом следует полагать, что для каждого металла и температуры его испытания существует определенная степень предварительной пластической деформации, которая обеспечивает в данных условиях максимальную прочность его при статическом и циклическом нагружении. Это положение экспериментально подтверждено в наших исследованиях. Наряду с закономерностями влияния на усталость параметров качества поверхностного слоя получены численные значения оптимальных величин предварительной пластической деформации для различных температур испытания жаропрочных сплавов из условий их максимальной прочности.  [c.172]

Для оценки влияния истории циклического деформирования на сопротивление деформированию при длительном статическом нагружении проведена серия испытаний на ползучесть образцов, предварительно подверженных мало цикловому нагружению (жесткий режим, jV= 500 циклов при размахе деформации е = 1,0%) и температурах 610 и 670 °С (штриховая линия на рис. 4.54, а). Образцы, прошедшие предварительную тренировку, испытывали на ползучесть при тех же температурах.  [c.223]

Другим крайним случаем является настолько развитая зона неупругого деформирования, что область повышенной интенсивности нагружения в устье трещины представляет собой небольшой фрагмент. В этом случае поступающий по конвейеру материал оказывается практически полностью подготовлен (накоплено значительное повреждение за счет предварительного пластического деформирования), и при вступлении в зону влияния трещины происходит его относительно быстрый долом. Разрушение здесь связано в основном с номинальным неупругим деформированием При статическом нагружении эквивалентна ситуация, когда разрушающая нагрузка близка к нагрузке предельного равновесия. По-видимому, компромиссом для перехода от одной крайней ситуации к другой (от а л/7 к р ) служит использование параметра р / . Имеющиеся противоречия между экспериментальными данными о величине а (0,5 1 или 1,3, по данным различных исследователей) могут быть связаны с разным положением конкретной ситуации в диапазоне между этими двумя полюсами.  [c.252]

Изучение влияния деформационного старения на форму кривых усталости позволило выявить ряд закономерностей. В частности, можно утверждать, что статическое и динамическое деформационное старение способствуют повышению значения предела усталости. Наклон кривых усталости в результате предварительного статического деформационного старения возрастает, а точка перегиба кривой усталости при выходе на горизонтальной участок смещается в сторону меньших циклов нагружения [27].  [c.165]

Изучение влияния деформационного старения на форму кривых усталости позволило выявить и ряд закономерностей. В частности, можно утверждать, что статическое и динамическое деформационное старение способствует повышению значения предела выносливости. Наклон кривых усталости в результате предварительного статического деформационного старения возрастает, а точка перегиба кривой усталости при выходе на горизонтальный участок смещается в сторону меньших циклов нагружения [73]. Однако такой характер изменения кривых усталости наблюдается при степенях предварительной пластической деформации, не превышающих 10% (статическое растяжение). При больших степенях предварительной деформации имеются противоречивые данные о форме кривой усталости после предварительного деформационного старения. В ряде случаев наблюдается исчезновение четко выраженного физического предела выносливости [40]. В аустенитной нержавеющей стали типа 304 эффект динамического деформационного старения при малоцикловой усталости проявляется при температурах испытания 300-500 При этом на петлях механического гистерезиса наблюдается прерывистое пластическое течение [45, 47].  [c.237]

Интегральный подход к процессу в целом путем введения понятия повреждаемости. Этим термином обычно обозначают понижение сопротивления тому же виду нагружения (например, усталостному, длительному статическому и т. п.), которому предварительно были подвергнуты образцы или детали. Особым вопросом является определение повреждаемости при изменении вида напряжения, например, оценка усталостной повреждаемости по изменению однократной прочности или, наоборот, влияние трещины от статической перегрузки на усталостную прочность. Так, в лопатках турбин исходные межкристаллитные трещины от длительного статического нагружения иногда становятся очагами последующего усталостного разрушения. Отметим, что различные механические свойства в процессе нагружения могут изменяться в противоположном направлении. Отсюда вытекает, что повреждаемость, по-видимому, невозможно рассматривать независимо от метода ее оценки. Однако изучение повреждаемости не избавляет от необходимости оценки условий перехода через критическое состояние разрушения и не заменяет прямого изучения процесса развития трещин.  [c.179]

Для образцов с предварительно нанесенной трещиной степень чувствительности к коррозионному растрескиванию понижается с уменьшением толщины статически нагруженных образцов. Вероятно, объяснение этого явления нельзя полностью связать с механическими факторами — невыполнением условий плоской деформации. Такое изменение чувствительности зависит от термической обработки, скорости нагружения, чувствительности сплава к растрескиванию и ориентации структурных составляющих [1]. Кроме того, такое влияние обусловлено затруднениями, связанными с установлением окклюдированной ячейки, приводящей к изменению pH в вершине трещины, при понижении толщины образца. Образованию такой ячейки, вероятно, препятствуют многие анионы. Поэтому добавки СгО , РО "" и F " и многих других веществ понижают или предотвращают коррозионное растрескивание. Некоторые катионы более положительные, чем титан, оказывают аналогичное влияние (например, Си +).  [c.275]


Влияние предварительного кратковременного пластического деформирования на последующее поведение материала в условиях длительного статического нагружения чаще всего оценивается по результатам испытаний на длительную прочность.  [c.35]

Предварительно изучали влияние статических напряжений на скорость коррозии трубной стали на деформированных изгибом (по трехточечной схеме) образцах стали 17ГС в термостатированных условиях и перемешиваемой среде, представляющей смесь нефти с 3%-пым хлоридом натрия в отношении 1 1. Скорость коррозии определяли по потере массы за 720 ч выдержки. Как следует из рис. 104, с увеличением напряжений до предела текучести (350 МПа) скорость коррозии увеличивается, а затем при достижении текучести уменьшается вследствие наступления стадии легкого скольжения и релаксации напряжений, обусловленной выбранной схемой нагружения с заданной величиной деформации. Это указывает на возможность усиления коррозионного взаимодействия трубной стали с рабочей средой даже при нагружении в упругой области с возникновением коррозионных поражений, которые в дальнейшем могут стать концентраторами напряжений и после инкубационного периода инициировать возникновение коррозионно-механических трещин. Если в концентраторе отсутствуют условия для существенной релаксации напряжений, что обычно имеет место при циклическом (повторно-статическом) нагружении с накоплением микроискажений решетки, процесс коррозионного взаимодействия будет ускоряться на протяжении всей стадии деформационного упрочнения, как это указывалось в гл. П.  [c.230]

Во-первых, должно быть рассмотрено влияние статического и циклического предварительного нагружений на последующий рост трещины. Как показано, максимальная величина К, используемая в процессе выращивания усталостной трещины, не оказывает влияния на определяемые величины Кхкр [99]. Опыты были проведены со сплавами Т1—6А1—4 V и —8А1—1 Мо—1 V, которые име-  [c.320]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

Смещения критическ 1х температур Ltd зависят от размеров поперечных сечений (толщи(1ы Я и ширины В) (рис. 48 и 49) [2J. Наибольшим ока.зы-вается увеличение вторых критических температур при статическом растяжении с варьированием толщины сечения образца. При этом интервал температур квазихрупких состояний сокращается. Ширина сечения оказывает меньшее влияние на увеличение критических температур, чем толщина сечения. Ударное инициирование трещин (по Робертсону) дает абсолютные значения вторых критических температур примерно на 60—70 С выше, чем при статическом инициировании. Для термически необработанных сварных соединений повышение первых критических температур происходит более интенсивно (в 1,4—1,5 раза), чем для основного металла. При увеличении предварительных пластических деформаций от О до 10 % за счет деформационного старения вторые критические температуры возрастают практически линейно для малоуглеродистых сталей это возрастание приблизительно равно 40 °С. Повышение температур старения при заданной предварительной деформации приводит к монотонному увели-ченшо вторых критических температур с максимумом при 250—300 С (если деформация равна 10 %, Д са i= 80 С), При циклических поврежден.иях, оцениваемых в относительных долговечно стях (отношение числа циклов предварительного нагружения к числу циклов до разрушения), увеличение Д/сд и для малоуглеродистых сталей (долговечность Ш ) происходит по линейной зависимости с коэффициентами пропорциональности соответственно 30— 35 и 40—80. Увеличение долговечности на порядок снижает указанные коэффициенты пропорциональности на 25— 30 %. Малоцикловые повреждения в области температур деформационногв старения (250—300 °С) повышают коэффициенты пропорциональности примерно в 2 раза.  [c.71]

В реальных условиях циклическому нагружению может предшествовать статическое с достаточно большой величиной пластической деформации (например, холодная гибка деталей в процессе изготовления конструкций). Поэтому представляло интерес рассмотреть влияние предварительной статической деформации на характер изменения картины микронеоднородной деформации в процессе циклического нагружения. Учитывая наличие резко выраженной микронеоднородной деформации, сопоставление особенностей про текания ее при статических и циклических нагружениях было выполнено на одних и тех же образцах. Для этого образец на первой стадии подвергали циклическому пульсирующему нагружению (5 = 0) с получением остаточной деформации 3 %, после чего тот же образец статически растягивали. У второго образца программа нагружения изменялась на первом этапе образец подвергали статиче-  [c.31]

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]


Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

В работе [16] отмечается, что низкий непродолжительный отжиг полностью устраняет возникающий после предварительного растяжения эффект Баушингера, в то время как упрочнение еще сохраняется. Более глубокий отжиг приводит к тому, что уже совпадающие между собой кривые растяжения и сжатия приближаются к исходной кривой деформирования. Вследствие того, что ориентированные дефекты в большей степени неравновесны, чем дефекты дезориентированные, процесс, протекающий при большей температуре и меньшей скорости, должен приводить к меньшему значению эффекта Баушингера по сравнению с процессом, протекающим при меньшей температуре или большей скорости нагружения. Вообще исследования закономерностей процесса упругопластического деформирования материала в условиях неизотермического нагружения необходимо связывать со скоростью протекания процесса деформирования. Диапазон скоростей деформирования, определяемый современными инженерными задачами, простирается от 10 до 10 с . Верхняя граница этого интервала скоростей определяется технологическими задачами взрывной сварки, ковки, штамповки, а нижняя — относится к случаю ползучести и релаксации напряжений. Ясно, что в столь широком диапазоне изменения скоростей деформирования не может быть единой зависимости, связывающей сопротивление деформированию со скоростью. Анализ экспериментальных данных показывает, что следует различать по крайней мере две зоны влияния скорости деформирования — статическую и зону высоких скоростей, динамическую (между этими зонами может лежать зона относительно слабого влияния скорости деформирования на процесс деформирования материала). Причем влияние малых скоростей деформирования на указанный процесс (порядка 10 —10 с ) с физической точки зрения объясняется наличием реологических эффектов (ползучестью), а больших скоростей (порядка 10 —10 с ) — наличием динамических эффектов. Анализируя результаты экспериментальных работ по растяжению образцов при различных скоростях и температурах, можно сформулировать два общих свойства простейшего уравнения состояния материала [17] о = f (е , Т, Р), где Т (Т ти тах)> Р (Рт1п> Ртах) Ртах <7 10 С  [c.133]

Продемонстрируем последовательность реализации методики вертикальных сечений применительно к исследованию поверхности разрушения металлов. В работе [79] для исключения влияния структуры материала на величину D поверхности излома измерения проводили на одном образце (размером 12 х 24 х 180 мм с наведенной усталостной трещиной) из стали 30 rMnSiNi2A, подвергнутом предварительному наводороживанию и последующему статическому нагружению по схеме консольного изгиба. Условия нагружения обеспечивали постепенный стабильный рост трещины и возможность дальнейшего изучения соотношения между D и энергией, необходимой для формирования поверхности разрушения, а также последовательного изменения D с ростом макротрещины.  [c.54]

На рис. 4.17 приведены результаты влияния предварительного циклического нагружения на комплекс механических свойств низколегированной нормализованной стали 16Г2АФ. Эта феррито-перлит-ная сталь с размером зерна феррита 5,6-Ы,6 мкм природно не склонна к деформационному старению. Испытания при повторно-статическом нагружении [96] проводили на гидравлической машине УММ-100 с час-  [c.153]

Скорость разрушения определяется кооперативными процессами, прол исходящими на микро- и макроуровнях, и поэтому необходим учет как прочности межатомной связи в бездефектной кристаллической решетке, так и характеристик прочности и пластичности материалов с дефектами — дислокациями, вакансиями и т. п. на микро- и макроуровнях с учетом влияния исходной структуры на характеристики прочности и пластичности. В связи со сложностью поставленных механикой разрушения задач прямого эксперимента недостаточно для определения общих закономерностей разрушения материала с трещиной, а требуется привлечение подходов физики разрушения, позволяющих вникнуть в суть механизма явления. Но и это о мало, так как необходимо учитывать сложные по своему содержанию микропроцессы, оказывающие неоднозначное влияние на макропроцессы, определяющие в конечном итоге скорость разрушения. Переход от микроразрушения к макроразрушению может быть достигнут путем учета масштабного подобия. Это требует привлечения к а 1ализу механики трещин наряду с физикой прочности также теории подобия и анализа размерностей [28, 29]. Для применения теории подобия необходимо иметь большой объем предварительных данных и конкретных физических идей, позволяющих вывести уравнение, определяющее процесс. Если уравнение не удалось вывести, то применяют анализ размерностей [29]. Подходы механики разрушения позволяют рассматривать процесс разрушения как автомодельный, что упрощает решение задач механики трещин, ибо в условиях автомодельности необходимым и достаточным условием обеспечения подобия локального разрушения является использование только одного критерия подобия. К тому же теория подобия является своеобразной теорией эксперимента, так как позволяет установить, какие параметры следует определять в опыте для решения той или иной задачи [28]. Неучет этого фактора при определении критериев линейной механики разрушения привел к известным трудностям и к необходимости раздельного определения статической Ki . динамической Кы и циклической /С/с трещиностойкости. Однако каждый из указанных критериев, определенных экспериментально, без учета подобия локального разрушения, даже при одном и том же виде нагружения часто не дает сопоставимых значений из-за влияния степени стеснения пластической деформации на микромеханизм разрушения.  [c.41]

Рекомендованные в методике опытные значения пределов выносли ности сплава АМг61 по сравнению с аналогичными значениями, полученными в сопоставимых условиях и при одинаковых значениях N0, в 2,4 раза ниже, чем у стали Ст. 3. Испытания при трех значениях г позволили обосновать. зависимость предела выносливости Очк от среднего напряжения циклов а . Было исслеДовано влияние на усталостную прочность элементов металлических конструкций предварительного однократного статического нагружения высокими нагрузками, что соответствует условиям инспекторских испытаний кранов с динамической и статической перегрузками и двухступенчатого циклического нагружения, соответствующего принятой в краностроении упрощенной гистограмме, состоящей из большого числа циклов нормальных нагрузок рабочего состояния и малого числа циклов максимальных нагрузок рабочего состояния (резкие пуски и торможения механизмов и т. д.), причем в последнем случае учитывается повреждающее влияние максимальных нагрузок рабочего состояния, проявляющееся в снижении исходного предела выносливости элемента соединения.  [c.382]

Исследования, посвященные оценке влияния предварительной пластической дефюрмации на последующее поведение материала при длительном статическом нагружении и предварительного длительного действия статической нагрузки на последующее нагружение при возрастающем напряжении, позволяют оценить лишь изменение конечных характеристик разрушения (пределы длительной прочности, кратковременной прочности и пластичность).  [c.34]


Смотреть страницы где упоминается термин Влияние статического предварительного нагружения : [c.106]    [c.129]    [c.205]    [c.147]   
Смотреть главы в:

Демпфирование колебаний  -> Влияние статического предварительного нагружения



ПОИСК



В предварительное

Нагружение предварительное

Нагружение статическое

Предварительного .нагружения влияние



© 2025 Mash-xxl.info Реклама на сайте