Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подход, использующий комплексный модуль

ПОДХОД, ИСПОЛЬЗУЮЩИЙ КОМПЛЕКСНЫЙ МОДУЛЬ  [c.92]

Анализ вибрации и распространения волн в вязкоупругих композитах проведен в [1]. Причем основное внимание уделено расчету поведения при стационарном гармоническом нагружении. Хорошо известно, что, используя свойство интеграла Фурье, решения для стационарного случая можно применить для расчета поведения при нестационарных воздействиях произвольного вида. Обсудим вкратце этот подход с точки зрения применения к решению задачи алгоритма FFT [20]. В динамическом анализе композитов используются и другие методы, например преобразование Лапласа [1] и метод характеристик [21]. Однако есть основания полагать, что точность и вычислительная эффективность алгоритма РТТ плюс легкость получения стационарного поведения при помощи упругих решений делают этот подход наиболее привлекательным. Здесь представляет интерес также удобство применения численных или очень общих аналитических представлений комплексных модулей (податливостей).  [c.196]


Автору неизвестны другие применения алгоритма FFT для решения задач вязкоупругости, кроме рассмотренного в [23], где решается квазистатическая задача. Из уравнения (5.36) видно, что единственная информация, которая необходима для описания конструкции или материала с вязко-упругими свойствами, это передаточная функция Согласно принципу соответствия [1], и независимо от того, является ли задача квазистатической или динамической, эта функция идентична упругой передаточной функции, за исключением того, что вместо упругих констант в нее входят комплексные модули, или податливости. Более того, как показано в [1], для материалов с малым тангенсом потерь можно получить Rh непосредственно из численного или аналитического упругих решений. Этот подход является весьма общим, если обратить внимание, что и / в уравнении (5.31) могут представлять любые напряжения, деформации или перемещения в любой конструкции, обладающей вязкоупругими свойствами, или другой линейной системе. В следующем разделе будет также показано, что рассмотренный подход легко использовать для анализа некоторых задач из области механики разрушения.  [c.200]

Используя подход, основанный на применении комплексного модуля, можно решать произвольную физическую задачу, заменив модуль Юнга Е на комплексное число E - -vx ) или k[ -bill), где считается, что Е, Е", т] и А являются функциями частоты. Для системы с одной степенью свободы изображение перемещения связано с изображением силы Е ш) формулой  [c.97]

Когда на поверхность балки или пластины накладываются чередующиеся слои из вязкоупругого клея и металла, то для описания динамического поведения такой слоистой системы можно использовать изложенный выше подход. Однако здесь можно предложить и другой метод, а именно рассмотреть данную структуру как эквивалентную однородную систему, чьи осредненные свойства зависят от конкретных конструктивных особенностей реального покрытия. Такой подход имеет два достоинства из экспериментов выявлено, что комплексный модуль упругости зависит только от параметра поперечного сдвига gN = Е Хп /ЕсНсНвЫ й от безразмерной толщины h = Нс/Ноу поэтому эквивалентное однородное демпфирующее покрытие можно во всех случаях рассматривать как однослойное демпфирующее покрытие, и, следовательно, здесь можно использовать формулы и подход, применяемые для однослойных демпфирующих покрытий, устанавливаемых на подкрепленных и непод-крепленных конструкциях [6.8, 6.12, 6.13].  [c.308]


Смотреть главы в:

Демпфирование колебаний  -> Подход, использующий комплексный модуль



ПОИСК



Модуль комплексный

Подход



© 2025 Mash-xxl.info Реклама на сайте