Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальная отработка конструкции

ЭКСПЕРИМЕНТАЛЬНАЯ ОТРАБОТКА КОНСТРУКЦИИ  [c.213]

ЭКСПЕРИМЕНТАЛЬНАЯ ОТРАБОТКА КОНСТРУКЦИЙ ТЕПЛООБМЕННЫХ АППАРАТОВ  [c.240]

Принятые в практике методы расчета прочности сварных соединений приближенны. Они дают возможность получить решение с меньшей затратой времени, однако нуждаются в дополнительной корректировке, основанной на опыте, накопленном в процессе изготовления, эксплуатации и экспериментальной отработки конструкций.  [c.362]

Параллельно с описанными этапами разработки необходимо выполнять натурные исследования наиболее нагруженных узлов и элементов конструкции. При этом следует построить модель испытаний, которая позволила бы управлять поиском точек — реализаций в пространстве состояний изделия с целью минимизации их числа при сохранении высокой информативности результатов экспериментальной отработки. Другим, не менее важным приложением экспериментальной отработки конструкции является корректировка соответствующих методов численного моделирования,-  [c.288]


Требование Ланге Ф.Ф. о гарантированном ресурсе времени работы машины, предъявленное ЦИАМу уже после согласования с ним (в августе-сентябре с.г.) программы сдаточных испытаний, задерживает сдачу лаборатории машин ЦИАМом, так как установление ресурса времени работы машины связано с длительной экспериментальной отработкой конструкции. Удовлетворить такие требования ЦИАМ отказывается, мотивируя это тем, что это не было оговорено ни в Технических условиях лаборатории, ни в распоряжении Правительства."  [c.579]

Постановка многих форкамер иа двигателе с большой тягой облегчает экспериментальную отработку конструкции двигателя, так как в этом случае появляется возможность предварительной экспериментальной доводки только одной форкамеры. Это значительно проще, чем отработка всей камеры в целом.  [c.316]

Это, в свою очередь, требует проведения большого объема научно-исследовательских работ, направленных на более глубокое изучение свойств муфт, разработку способов управления их качественными характеристиками, создание рекомендаций по выбору оптимальных параметров муфт, развитие методов прогнозирования их ресурса. Особое место здесь отводится теоретическим методам исследования, позволяющим еще на стадии проектирования заложить в конструкцию определенный уровень надежности, проанализировать влияние конструктивных параметров на напряженно-деформированное и температурное состояния, определить их оптимальные значения. Чисто экспериментальный путь решения указанных задач, как известно, оказывается чрезвычайно длительным и дорогостоящим. Обычно к моменту экспериментальной отработки конструкции и накопления достаточной информации по статистике отказов либо морально устаревает сама конструкция, либо появляются новые, более совершенные конструкционные материалы, в результате чего требуется проведение дополнительных экспериментальных исследований. Форсирование режимов испытаний не решает проблемы в целом, поскольку в этих условиях, как правило, из-за температурного фактора существенно искажается картина тех процессов, которые протекают при нормальных режимах. Надежных методов эквивалентного перехода от форсированных режимов испытаний к реальным для резинотехнических изделий в настоящее время не существует.  [c.3]

Описаны условия работы циркуляционных насосных агрегатов в ядерных реакторах, требования к конструкции, виды и типы насосов. Рассмотрены известные конструкции водяных и натриевых насосов, изложена методика аналитической н экспериментальной отработки проточной части и насосного агрегата в целом. Приведены результаты эксплуатации насосов на объектах.  [c.2]

В предлагаемой читателю книге сделана попытка проанализировать и обобщить опыт создания главных циркуляционных насосов для АЭС и сформулировать некоторые рекомендации, которые представляются авторам существенными. Приведены также описания конструкций и экспериментальной отработки насосов и их основных узлов в стендовых условиях, результаты эксплуатации ГЦН в условиях АЭС, изложены соображения о. перспективе дальнейшего совершенствования их конструкций. Особое внимание уделено инженерным вопросам конструирования, обеспечивающим надежность насосного агрегата. Используя имеющуюся информацию и личный опыт, авторы ставили цель довести до читателя представления об оптимальных решениях основных узлов и сформулировать соответствующие рекомендации, которые могли бы помочь конструктору в практической деятельности. Излагаемый материал в значительной степени может быть использован при создании насосов не только для АЭС, но и для других отраслей промышленности. В книге не приводятся известные методы гидравлических и прочностных расчетов, поскольку они достаточно хорошо освещены в литературе [1, 2 и др.]. В тех случаях, когда обращение к теории лопастных машин было необходимо для последовательного изложения материала, это делалось в весьма сжатой форме.  [c.3]


Отработка конструкции гидростатических подшипников. В процессе экспериментальных исследований ГСП при необходимости проверяется влияние на их характеристики определяющих размеров (например, диаметров дросселей), а также возможных геометрических погрешностей изготовления и монтажа. На характеристики радиальных ГСП оказывают влияние отклонения от заданной формы рабочих поверхностей вала и подшипника (конусность и эллиптичность), а также взаимный перекос осей подшипников и вала.  [c.231]

Отработка конструкции, технологии изготовления и изучение прочностных характеристик рулонированных фланцев производилась на экспериментальных образцах диаметром 500—800 мм.  [c.56]

Основой действующей комплексной методологии учета требований ресурса при проектировании является модель (типизация) конструкции, целенаправленно учитывающая потребные объемы и точность расчетно-экспериментальной отработки. Так, для современного пассажирского самолета проектировочный расчет на ЭВМ напряженно-деформированного состояния, долговечности и живучести конструкции ведется в нескольких десятках ответственных типовых зон, как правило, на основе метода конечных элементов, общим объемом до 100-150 тыс. неизвестных. В ближайшем будущем ожидается развитие расчетов со все возрастающей точностью приближений к реальному поведению конструкций. По мере проработки чертежной документации проводятся специальные испытания образцов и конструктивных элементов (2000—3300 шт.) и натурных фрагментов, панелей и узлов (100—200 шт.) при спектрах нагружения, максимально приближенных к эксплуатационным. При этом одной из основных целей является разработка рекомендаций и проверка тех-4  [c.4]

На заключительном этапе перед началом регулярной эксплуатации проводятся лабораторные натурные ресурсные испытания полно размерной конструкции, воспроизводящие нагружение по всем фазам реального полета, а также основные процедуры визуального и инструментального контроля технического состояния. Для проведения опытной отработки конструкций создана экспериментальная база, включающая испытательные и измерительные комплексы различного уровня, тиражирование и внедрение которых способно существенно повысить эффективность обеспечения надежности при создании технических объектов.  [c.5]

Разработка, создание и использование новых средств экспериментального исследования материалов и конструкций. Решение проблемы обеспечения надежности и ресурса изделий машиностроения, как уже отмечалось, в известной мере определяется уровнем разработки методов и средств экспериментальной оценки действительной нагруженности конструкций, напряженно-деформированных и вибрационных состояний, параметров структуры материалов, характеристик прочности и трещиностойкости, динамических характеристик прочности, трещиностойкости и тела человека—оператора машины при вибрационных и других воздействиях. Это обусловлено необходимостью повышения объема экспериментальной информации с возрастанием вероятности безотказной работы, которую необходимо обеспечить при создании ответственных конструкций. Полученная информация является весьма ценной для оценки завершенности экспериментальной отработки машин и конструкций при проведении лабораторных и натурных испытаний, а также для определения влияния условий эксплуатации на изделия и установления остаточного ресурса конструкций.  [c.28]

Изложены основы проектирования мощных теплообменных аппаратов для АЭС с натриевыми н газовыми теплоносителями. Рассмотрены особенности конструкций, методы расчетной и экспериментальной отработки теплообменников при неравномерном продольно-поперечно.м течении теплоносителей в трубном пучке и методы определения режимных параметров.  [c.2]

Секционирование трубного пучка в пределах теплообменника, даже при отсутствии отсечной арматуры (устройств) по отдельным секциям, имеет ряд преимуществ по сравнению с крупноблочными секциями. В основном эти преимущества сводятся к тому, что дефектная секция в теплообменнике может быть либо отсечена, либо заменена запасной мелкие секции боле удобны для экспериментальной проверки и отработки конструкции. Несмотря на указанные преимущества, секционные теплообменники широкого распространения не получили. Это объясняется прежде всего тем, что отсутствуют апробированные надежные методы индикации текущей трубы или секции, требующей отключения, а также в связи с менее серьезными последствиями разгерметизации теплообменников для безопасности АЭС по сравнению с последствиями разгерметизации ПГ. Кроме того, наряду с положительными преимуществами секционные теплообменники имеют и недостатки.  [c.65]

Включение в обобщенный метод этапов отработки конструкции и экспериментального исследования механизмов позволяет получить при динамическом синтезе наиболее достоверные данные для создания конструкций, соответствующих заданным условиям.  [c.97]

В реальных конструкциях наблюдается значительный разброс показателей прочности. Это следует учитывать при проектировании конструкций, вводя коэффициент запаса прочности, который назначают в результате экспериментальной отработки клеевого соединения. В зависи.мости от степени ответственности конструкции и условий ее работы выбирают значение коэфициента запаса прочности от 1,5 до 3.  [c.167]


Программу экспериментальной отработки строят на последовательных испытаниях объектов все более высоких иерархических уровней. Так, после успешной отработки систем и сборочных единиц переходят к испытаниям изделий, а затем комплекса. Изготовление опытных образцов производится по документации главного конструктора. Испытания проводятся на стендовом оборудовании в условиях предприятия-изготовителя опытных образцов. На основании информации, полученной в ходе испытаний, конструкцию изделия совершенствуют, что находит отражение в технической документации. После завершения стендовых испытаний сборочных единиц, узлов, механизмов и систем производится их монтаж на изделие. Укомплектованное изделие по штатной документации подвергается предварительным (заводским) испытаниям на функционирование. В ходе этих испытаний  [c.256]

Формально прямые и обратные задачи прямого варианта сводятся к чистым задачам математической статистики. Их решение связано с решением других задач экспериментальной отработки набор статистики должен проводиться после доводки конструкции и отработки документации.  [c.491]

Кроме того, для вновь разрабатываемых элементов конструкции КА, бортовых систем, приборов и агрегатов в качестве априорной информации могут использоваться перечни типовых отказов, их возможных последствий, причин и условий возникновения, получаемых на стадиях, предшествующих экспериментальной отработке.  [c.495]

Никаких данных по способам получения и свойствам хрупких тензочувствительных оксидных покрытий в литературе до настоящего времени нет, а промышленные способы оксидирования алюминиевой фольги служат для создания на ней очень тонких эластичных электроизоляционных пленок и для получения наклеиваемых хрупких тензочувствительных покрытий со стабильными характеристиками непригодны. Поэтому путем экспериментальной отработки были решены следующие основные вопросы выбор материала фольги, способ монтажа анода, оптимальные толщины фольги и оксидной пленки, состав электролита и его температура, электрический режим и длительность процесса оксидирования, марка клея, величина удельного давления на фольгу и температура при наклеивании, диапазон тензочувствительности и способы регулирования тензо-чувствительности, диапазоны рабочих температур и относительной влажности, стабильность характеристик и применимость для исследования упругих и упруго-пластических деформаций в различных условиях испытания деталей и узлов конструкций. Ниже приведены результаты проведенной отработки технологии получения и применения наклеиваемых хрупких тензочувствительных покрытий со стабильными характеристиками.  [c.11]

Как отмечалось, коэффициентом безопасности иногда учитывается также неточное знание действующих нагрузок и напряжений из-за приближенности методов расчета. Однако для конструкций, лимитированных по массе, правильнее другой подход принимать значения / исходя только из условия обеспечения гарантированной надежности работы системы неточность же расчетных методов, принятых при расчете нагрузок и прочности, уточнять в дальнейшем по результатам натурной экспериментальной отработки. Этот подход дает возможность принять наименьшие значения /. Кроме того, при достаточном объеме экспериментальных данных становится возможным использовать вероятностный учет всех входящих параметров. С такой позиции допустимость даль-  [c.16]

Для деталей резьбовых соединений запасы прочности увеличивают в 1,25 раза. Это обеспечивает их повышенную прочность по отношению к стыкуемым деталям, что повышает надежность узла или целого агрегата и дает также возможность при экспериментальной отработке выявить картину разрушения самой конструкции.  [c.17]

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ И ОТРАБОТКА КОНСТРУКЦИЙ  [c.32]

Составляя незначительную часть массы узла, болты являются весьма ответственным элементом конструкций. Коэффициент k позволяет обеспечить надежное соединение, а при проведении экспериментальной отработки прочности — получить данные о несущей способности самого узла.  [c.355]

Экспериментальное проектирование заключается в отработке конструкции на стенде, имитирующем конструкцию основных узлов станка и условия его работы. Уменьшение стоимости экспериментального стенда достигается за счет изготовления лишь тех узлов, работоспособность которых вызывает сомнение. Изменяя конструктивные элементы стенда, добиваются такого запаса работоспособности этих узлов, который может гарантировать требуемые характеристики проектируемого станка.  [c.13]

Экспериментально-доводочные испытания проводятся в основном в процессе отработки конструкции и доводки параметров нового дизеля или при модернизации существующего образца с целью его усовершенствования, а также для проверки работы и доводки новых узлов или агрегатов дизеля.  [c.534]

В реальных конструкциях наблюдается значительный разброс показателей прочности. Это следует учитывать при проектировании конструкций, вводя коэффициент запаса прочности, который назначают в результате экспериментальной отработки клеевого соединения.  [c.162]

Разумеется, двигатели создавались группой Глушко не только для экспериментальной отработки элементов конструкции и подбора оптимальных топливных смесей — всегда подразумевались какие-то проекты ракет, на которые эти двигатели будут установлены.  [c.245]

В процессе создания образца новой турбомашины важным этапом, непосредственно следующим за проектированием, является доводка. Цель доводки — экспериментальная отработка конструкции турбомашины, направленная на приведение в ooTsef-ствие ее параметров, характеристик и свойств с параметрами,  [c.189]

При экспериментальной отработке конструкции ЛА используются теизодатчики (рис. 3.8, а), предназначенные для измерения деформаций и усилий, конструктивно представляющие собой тонкую (20—60 мкм) проволоку 1 в виде лесенки, оклеенной с двух сторон бумагой 2.  [c.80]

Во второй половине 30-х годов конструкторским коллективом В. А. Чижевского была разработана конструкция экспериментального высотного самолета БОК-1, по общей конструктивной схеме близкого к самолету АНТ-25, снабженного двигателем М-34РН (впоследствии замененным двигателем М-34РНБ с турбокомпрессором), впервые оборудованного герметизированной кабиной и предназначавшегося для полетов на высотах до 14 100 м. В 1940 г. прошли летные испытания аналогичные по конструктивному исполнению высотный самолет-разведчик БОК-11, оборудованный двигателем М-34ФРН (с двумя компрессорами), сохранявшим постоянство мощности на высотах полета до 8000 м, и высотный самолет -разведчик дальнего действия БОК-15, снабженный дизельным двигателем АЧ-40. В 1941 г. работы по одномоторным высотным самолетам дальнего действия были прекращены вследствие их невысокой боевой эффективности. Значение их для последующего развития авиационной техники ограничилось отработкой конструкций герметизированных кабин, турбокомпрессорных установок для наддува двигателей и т. п. Более заметные практические успехи были достигнуты тогда же в проектировании и постройке тяжелых самолетов-бомбардировщиков дальнего действия.  [c.357]

Программа экспериментальной отработки ГСП зависит от типа испытьсваемого ГСП и новизны его конструкции. Если в насосе применен ГСП с хорошо изученными характеристиками (с учетом влияния на них погрешностей изготовления и монтажа), то достаточно провести испытания в подтверждение проектных харак-  [c.232]


Разрабатывались динамические модели с учетом заданных условий заданный тип привода, его автономность, конструктивные особенности передающих механизмов. В последующем динамические модели уточнялись по результатам экспериментальных исследований. При экспериментальном исследовании определялись жесткост-ные характеристики, зазоры, коэффициенты трения и пределы изменения переменных параметров. При динамическом синтезе использовались данные экспериментов, а его результаты учитывались при окончательной отработке конструкции механизмов. Проведение исследования кулисных механизмов обобщенным методом по приведенной схеме позволило осуществить метрический и кинематический синтез ряда механизмов с поворотной или поступательно движущейся кулисой. Некоторые из этих механизмов, например с полуоборотной кулисой, используются в настоящее время в технологических машинах-автоматах электротехнической промышленности.  [c.118]

Отраслевые конструкторско-технологические бюро (ОКТБ) — подсистемы 2-го ранга — и конструкторские бюро (КБ)—подсистемы 2-го или 3-го ранга — в соответствии с назначением и поставленной технической задачей выполняют анализ достигнутого уровня и тенденций развития тракторов или их узлов с участием патентно-информационного бюро и подготавливают предложения для принятия решения, разрабатывают конструкцию тракторов или узлов и обеспечивают конструкторско-экспериментальную доводку. Бюро агрегатирования — подсистема 2-го ранга — осуществляет увязку сельхозмашин с трактором и согласование их параметров. Конструкторско-исследовательские бюро (КИБ) — подсистемы 2-го или 3-го ранга — обеспечивают комплексные функциональные исследования и испытания узлов и трактора в целом на надежность и долговечность. КИБ экспериментально определяют уровень отработки конструкции узлов трактора, прогнозируют их эксплуатационную надежность и долговечность и разрабатывают совместно с КБ рекомендации по их совершенствованию. Бюро теоретического анализа и расчетов — подсистема 2-го ранга — обеспечивает расчетную оценку параметров трактора, работоспособность и долговечность узлов.  [c.7]

Непосредственное перемещение регулятором большого золотника всегда вызывало споры согласно теории, регулятор должен быть быстроходным, с небольшой массой, приведенной к ходу муфты, включая и присоединенную массу золотников. На этот путь уже в двадцатых годах встали конструкторы гидротурбин, где легкий регулятор с помощью золотника ( иглы ) 0 8—10 мм воздействовал через каскад усилений на громадные сервомоторы. Такой усовершенствованный регулятор необходимо было создать и для паровых турбин, но война помешала его экспериментальной отработке, и поэтому в рассматриваемой серии турбин остался тихоходный регулятор старой конструкции. Из-за этого система регулирования обладала существенной нечувствительностью. По состоянию энергосистем этот недостаток еще не играл той решающей роли, как в следующем периоде. Значительно позднее, при модернизации турбины 100 МВт (К-100-90) был применен новый высокочувствитель-  [c.20]

Разработка конструкции выбранных механизмов и их критериальный анализ наиболее эффективно может проводиться с использованием дисплея. Разработка динамических моделей ведется с учетом заданных условий, которыми могут являться заданный тип привода, его автономность, конструктивные особенности передающих механизмов и др. В последующем динамические модели могут уточняться по результатам экспериментальных исследований и сопоставления их с результатами динамического синтеза. После разработки конструкции производится изготовление экспериментальных моделей, их экспериментальное исследование, а также определяются данные для динамического синтеза (жесткост-ные характеристики, зазоры, коэффициенты трения и др.) и пределы изменения переменных параметров. При этом используются результаты экспериментальной проверки исследуемых механизмов. Область изменения параметров может определяться ЛП-методом [4]. Динамический синтез ведется посредством аналоговых ЭВМ или устройств типа дисплея, что учитывается при разработке алгоритма синтеза. При динамическом синтезе используются данные экспериментов, а его результаты сопоставляются с ограничениями, принятыми при кинетостатическом синтезе и учитываются при окончательной отработке конструкции механизмов.  [c.96]

Даны основы теории надежности, ее математические модели, методы прогнозирования надежности машин и перспеЕТЯВЫ развития теории надежности, а также факторы, определяющие надежность. Рассмотрены проблемы исследования надежности изделий на этапе экспериментальной отработки обеспечения эксплуата101они 1х свойств деталей, определяющих надежность машин оптимизации конструкций машин по показателям надежности.  [c.4]

Раздел 3 посвящен одним из наиболее сложных вопросов - исследованию надежности на стадиях проектирования и эксплуатадаи технических систем. В нем рассмотрены проблемы исследования надежности изделий ка этапе экспериментальной отработки обеспечения эксплуатационных свойств деталей, определяющих надежность машин оптимизации конструкций машин по показателям надежности. Описаны стендовые испытания опытных образцов машин с целью обеспечения и прогнозирования надежности.  [c.10]

В настоящее время достаточно ясно сформировались две тенденции, два подхода к конструированию управляемых устройств. Первая из них основана на применении преимущественно планарной технологии микрополосковых линий, опирающейся на классические решения с тщательной проработкой вопросов проектирования н синтеза [10]. Вторая тенденция базируется на использовании так называемых объемншх интегральных схем (ОИС) — сложных полосковых структур, таящих в себе богатые функциональные возможности [4, 6]. Надо отметить, что критерий оценки сложная нли простая для полосковых линий в большей мере относится не к конструкции и технологии их производства, а в основном к методам расчета параметров. При этом все еще велика роль экспериментальной отработки устройств в процессе их создания. Отсюда также ясно, что в практике проектирования приобретают большое значение обоснованные н экспериментально проверенные модели полосковых структур н устройств на их основе.  [c.3]

Рассмотрены особенности эксплуатации планетоходе , способы их пфедвижения. особенности конструкции, вопросы управления движени-ом и экспериментальной отработки.  [c.114]

Проблема расчета звукоизоляции всего корпуса в целом представляет значительные трудности, так как требует решения комплексной сопряженной задачи излучения прямоугольной конструкции с учетом резонансных колебаний стенок (подробнее об этой задаче сказано в гл. 2). Приближенное решение задачи исследовалось в ряде работ, напрнмер, в [5.11] выполнен расчет звукоизоляции по шуму прямоугольного корпуса с одной гибкой стенкой, остальные жесткие. Результаты позволяют выделить три частотных области звукоизоляции, качественно сходные с областями звукоизоляции для одной стенки в первой — звукоизоляция по шуму определяется отношением упругости объема внутри корпуса к упругости стенок во втором — основное влияние оказывает многорезо-иансное возбуждение стенок и объема воздуха в третьей — влияет частота волнового совпадения . В процессе макетирования АС обычно проводится экспериментальная отработка звуко- и вибро-изоляционных характеристик различных вариантов конструкции корпусов.  [c.152]


Смотреть страницы где упоминается термин Экспериментальная отработка конструкции : [c.47]    [c.7]    [c.30]    [c.59]    [c.288]   
Смотреть главы в:

Главные циркуляционные насосы АЭС  -> Экспериментальная отработка конструкции



ПОИСК



Отработка экспериментальная



© 2025 Mash-xxl.info Реклама на сайте