Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообмен при турбулентном течении в каналах

Имеющиеся в настоящее время данные по установившемуся теплообмену при турбулентном течении в поперечном магнитном поле [37, 45, 48, 49, 50—52] касаются в основном течений в круглых и прямоугольных трубах и в плоскопараллельном канале. Однако малочисленность этих данных по каждому виду течений, а также сильная зависимость получаемых результатов от конкретных условий проведения экспериментов затрудняют их количественное сопоставление.  [c.82]

ТЕПЛООБМЕН В ТЕРМИЧЕСКОМ НАЧАЛЬНОМ УЧАСТКЕ ПРИ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ПЛАСТИНАМИ  [c.231]


В гл. 7 были рассмотрены механизм турбулентного переноса импульса и развитие турбулентного пограничного слоя несжимаемой жидкости на продольно обтекаемой гладкой поверхности, а в гл. 9 — теплообмен при турбулентном течении в длинных каналах постоянного поперечного сечения. Для расчета теплоотдачи использовалась аналогия между переносом тепла и импульса в турбулентном потоке. В настоящей главе методы аналогии применяются для расчета теплообмена между гладкой поверхностью тела и турбулентным пограничным слоем. Эта задача отличается от внутренней только тем, что при течении в каналах пограничные слои на стенках развиваются независимо лишь до определенного сечения, в котором они смыкаются. Вниз ио потоку от этого сечения течение устанавливается, т. е. безразмер-ные профили скорости и температуры в сечении не изменяются ио длине канала. В этой главе нас интересует область, в которой пограничный слой на поверхности тела развивается. Предполагается, что пограничный слой достаточно тонкий и не взаимодействует с другими пограничными слоями.  [c.280]

Стабилизированный теплообмен этих теплоносителей при турбулентном течении в каналах различной формы выражается эмпирической формулой [1, 3]  [c.171]

Теплообмен при турбулентном течении в трубах и каналах  [c.244]

Кольцевой канал. Числа Нуссельта при турбулентном течении в кольцевом канале для внутренней (Ни ) и наружной (Мпа) стенок при теплообмене с одной стороны ( ) и,с двух (") сторон рассчитываются по формулам 4.2, модификация которых для жидких металлов приобретает вид  [c.93]

Числа Нуссельта при турбулентном течении в кольцевом канале для внутренней (Ын1) и наружной (Ннг) стенок при теплообмене с одной стороны и с двух сторон рассчитываются по формулам для жидких металлов  [c.136]

ТЕПЛООБМЕН ПРИ ПОЛНОСТЬЮ РАЗВИТОМ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ МЕЖДУ ПАРАЛЛЕЛЬНЫМИ ПЛАСТИНАМИ И В КОЛЬЦЕВЫХ КАНАЛАХ  [c.214]

Теплообмен в кольцевых каналах и в канале между параллельными пластинами (предельный случай кольцевого канала) представляет особенно интересную задачу конвекции, так как появляется возможность несимметричного обогрева стенок канала. Метод расчета теплообмена при ламинарном течении в кольцевых каналах обсуждался в гл. 8. В той же главе рассмотрено применение метода суперпозиции для расчета теплообмена при несимметричном обогреве. Задача расчета теплообмена при турбулентном течении в кольцевом канале может быть решена с помощью описанных методов решения аналогичной задачи для круглой трубы. Появляется только одна новая трудность, связанная с определением отношения касательных напряжений на стенках канала и радиуса, при котором касательное напряжение равно нулю. Эти величины необходимы для определения коэффициентов турбулентного переноса и градиентов скорости на стенках канала. Если задача для ламинарного течения была полностью решена исходя из основных законов сохранения, то аналитические методы решения аналогичной задачи при турбулентном течении являются полуэмпирическими и опираются на опытные данные. Отношение касательных напряжений на стенках кольцевого канала при турбулентном течении можно установить путем экспериментального определения радиуса, соответствующего максимальной скорости в кольцевом канале. Из простого баланса сил, приложенных к контрольному объему, легко показать, что радиус, соответствующий нулевому касательному напряжению и максимуму скорости, однозначно связан с отношением касательных напряжений на стенках канала.  [c.214]


При турбулентном течении в поперечном магнитном поле влияние поля на гидродинамику и теплообмен определяется двумя эффектами эффектом Гартмана и эффектом подавления турбулентности. Эффект Гартмана вызывает существенный рост сопротивления и небольшое увеличение теплоотдачи. Как видно из рис. 3.17, а, на котором показана зависимость числа Nu от чисел Re и На для течения в плоском канале, эффект Г артмана  [c.223]

Течение теплоносителей в активной зоне ядерных реакторов, теплообменников, парогенераторов практически всегда носит турбулентный характер. Поэтому ниже рассматривается теплообмен лишь при турбулентном течении жидкостей и газов в каналах различной формы, а также теплообмен при продольном и поперечном обтекании пучков труб или других поверхностей. Разбираются случаи вынужденной, свободной и смешанной конвекции. Интенсивность конвективной теплоотдачи жидкостей и газов при турбулентном течении определяется коэффициентом теплоотдачи, который, как правило, относится к разнице температур стенки и средней температуры среды а = — tf).  [c.51]

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН ПРИ ТУРБУЛЕНТНОМ РЕЖИМЕ ТЕЧЕНИЯ ТЕПЛОНОСИТЕЛЯ В КАНАЛАХ  [c.181]

Турбулентное движение - это сложное движение материи - сплошной среды - жидкости, газа и плазмы. Турбулентное движение возникает или при движении потока вязкой феды возле твердой поверхности, или при относительном движении двух потоков вязкой среды. В зависимости от конкретного движения внешние признаки, характерные только для турбулентного движения, могут быть различными. В сравнении с ламинарным турбулентное движение в трубах и каналах характеризуется резким увеличением сопротивления. При струйном течении ст]эуя, вытекающая из отверстия, имеет меньшую скорость, чем ламинарная нормальное сечение струи больше и струя быстрее размывается. При внешнем турбулентном движении толщина пограничного слоя и сопротивление движению больше. Теплообмен между турбулентным потоком и твердой поверхностью происходит более интенсивно, чем при ламинарном движении.  [c.11]

Коэффициент теплоотдачи а при течении жидкости в трубах или каналах определяется по разным формулам в зависимости от того, является ли режим ламинарным или турбулентным. В этом параграфе рассмотрим теплообмен при ламинарном и переходном режимах течения жидкости.  [c.338]

Аналитическое исследование радиационно-конвективного теплообмена в кольцевом канале при турбулентном режиме течения было сравнительно недавно предпринято в Л. 441]. Однако автору пришлось привлечь для решения задачи результаты экспериментальных исследований по определению профиля скоростей в кольцевом канале и коэффициентов турбулентной диффузии в потоке. Кроме того, принятый метод решения предполагает малые значения оптических плотностей потока и доминирующее влияние теплопроводности по сравнению с радиационным теплообменом в среде.  [c.401]

Теплообмен при резонансных колебаниях при стабилизированном турбулентном режиме течения газа в канале  [c.236]

Таким образом, в тех случаях, которые имеются в виду в Нормативном методе расчета котлоагрегатов, тепловой и гидравлический эквивалентные диаметры совпадают или почти совпадают друг с другом. Иначе обстоит дело при течении вдоль узких кольцевых каналов,образуемых двумя концентрическими трубами с диаметрами d и D = d + 26, если один только внутренний (или только наружный) периметр участвует в теплообмене. Формула (5-3) дает 46, тогда как = 26. Именно последний, гидравлический, диаметр (ig г принят в качестве определяющего размера при расчете теплоотдачи в кольцевых щелях. Это способствует выявлению прямой связи, всегда существующей меледу гидродинамическим сопротивлением и теплоотдачей при безотрывном турбулентном течении вдоль поверхностей нагрева. Поэтому рекомендуется от использования вообще отказаться и вводить в расчет только d .  [c.124]

При ламинарном и турбулентном режимах течения теплообмен рассчитывается так же, как в неподвижных каналах.  [c.358]

В 1.2 показано, что неставдюнарная теплоотдача при турбулентном течении в каналах с постоянным расходом отличается от квазистациоиарной главным образом за счет наложения на конвективный теплообмен нестационарной теплопроводности и изменения порождения турбулентности.  [c.101]

Теплообмен в жидкометаллических системах подробно рассмотрен в [20]. При ламинарном течении стабилизированный теплообмен в каналах различной формы рассчитывается по тем же формулам, что и для неметаллических жидкостей (см. табл. 3.21) стабилизированный теплообмен при турбулентном течении и постоянной плотности потока на стенке q = onst) рассчитывается по следующим формулам.  [c.222]

Теплоотдача при турбулентном течении в круглой трубе в поперечном магнитном поле исследована еще недостаточно. Экспериментальные данные разных авторов плохо согласуются между собой их анализ существенно затрудняется из-за сильного влияния на гидродинамику и теплообмен термогравитационной конвекции. Поэтому пока невозможно рекомендовать какие-либо формулы для расчета коэффициентов теплоотдачи, но аналогия процессов в круглой трубе и в плоском канале позволяет сделать следующие выводы. Средние коэффициенты теплоотдачи при турбулентном течении в поперечном магнитном поле должны лежать ниже значений, соответствующих турбулентному течению без магнитного поля и определяемых формулой (3,146), и не ниже значений, соответствующих ламинарному течению, С увеличением числа Пекле степень влияния магнитного поля на коэффициент теплоотдачи должна ослабевать и значения коэффициентов теп-  [c.223]


В работах [4, 5] было исследовано влияние излучения на теплообмен при течении Куэтта излучающей и поглощающей жидкости, а в [6, 7] рассмотрено течение пробки излучающего и поглощающего газа в канале и полностью термически развитое ламинарное течение между двумя параллельными диффузно излучающими и диффузно отражающими изотермическими бесконечными пластинами. Автор работ [8, 9] исследовал влияние излучения на характеристики ламинарного течения излучающей и поглощающей жидкости с постоянными свойствами при параболическом профиле скорости между двумя параллельными пластинами и в трубе. Течение пробки газа между двумя параллельными пластинами исследовалось в [10] при этом для решения радиационной ча сти задачи было использовано приближение Шустера — Шварцшильда. Исследованию теплообмена на тепловом начальном участке при течении излучающей и поглощающей жидкости в трубе в приближении серого и несерого газа при параболическом профиле скорости посвящены работы [И, 12]. Авторы [13, 14] исследовали теплообмен при турбулентном течении излучающего и поглощающего серого газа в трубе в условиях, когда газ является оптически тонким, а в работе [15] приведены экспериментальные и теоретические результаты по теплообмену при полностью развитом течении несерого излучающего газа в трубе. Задача нахождения распределения температуры на тепловом начальном участке для ламинарного течения в трубе была решена в общем виде методом  [c.581]

Остановимся на некоторых результатах исследования участков гидродинамической и тепловой стабилизации течений в каналах. Весьма подробное изучение ламинарного и турбулентного течения совершенного газа в начальном участке круглой трубы при до- и сверхзвуковых скоростях проведено Б. А, Жестковым (1953) при ряде предположений теплообмен между стенками и газом отсутствует, молекулярное и турбулентное числа Прандтля равны единице, профили скорости в переменных Дородницына задаются в виде некоторых универсальных зависимостей.  [c.808]

Развитие новой техники требует изучения локальных, интегральных и турбулентных свойств закрученного потока в специфических условиях—в каналах с изменяющейся по длине площадью поперечного сечения, при диафрагмировании выходного сечения и т. д. Между тем закономерности течения, тепло -и массообмена в осесимметричных каналах с местной закруткой потока изучены недостаточно. Имеющиеся в литературе результаты в подавляющем большинстве относятся к исследованию осредненных характеристик течения и теплообмена в непроницаемых трубах с частными законами начальной закрутки. Так мно- гочисленные результаты исследований по гидравлическому I сопротивлению и среднему теплообмену достаточно полно от-( ражены в [ 67].  [c.7]

Аналогичные эффекты увеличения интенсивности теплообмена при турбулентном режиме течения наблюдаются и в случае вибрации поверхности теплообменного аппарата. В этих случаях, как и при ламинарном режиме течения, в качестве характерной скорости выбирается амплитуда скорости вибрации, определяемая как Avof = Af А — амплитуда вибрации поверхности /—частота вибраций). Результаты исследования влияния поперечных вибраций на теплообмен в кольцевом зазоре и в канале при переходном и турбулентном режимах течения приведены в работе [71 ]. В работе (70 ] исследовалась теплоотдача как при ламинарном, так и при турбулентном режиме (рис. 118) течения воды в кольцевом зазоре с внешним диаметром 36 мм и в канале трубчатого теплообменника диаметром  [c.230]


Библиография для Теплообмен при турбулентном течении в каналах : [c.222]    [c.640]   
Смотреть страницы где упоминается термин Теплообмен при турбулентном течении в каналах : [c.221]    [c.311]    [c.145]    [c.516]    [c.83]    [c.12]    [c.284]    [c.162]    [c.215]   
Смотреть главы в:

Гидродинамика и теплообмен в атомных энергетических установках  -> Теплообмен при турбулентном течении в каналах



ПОИСК



Теплообмен при турбулентном течении

Течение в канале

Течение турбулентное

Турбулентность теплообмен



© 2025 Mash-xxl.info Реклама на сайте