Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее уравнение кручения

Общее уравнение кручения  [c.74]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]


После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Или еще иначе мы можем взять и, v, w, в некоторой форме удовлетворяющей уравнениям (14) или (16), и затем получить граничные условия, к которым они приводят. Таким образом, мы придем к косвенному методу решения, который часто оказывается полезным. Мы также можем использовать некоторые элементарные соображения, как, например, в главе V, и получить приближенные решения. Полученные таким путем приближенные решения нужно потом подставить в общие уравнения для того, чтобы проверить, будут ли в действительности иметь место найденные напряжения. Так, например, было сделано для кручения в 309 главы IX.  [c.410]

В случае, когда жесткость поперечного сечения кольца в смысле сопротивления кручению не бесконечно велика, что мы и имеем всегда на практике, мы должны обратиться к общему уравнению (123). Путем подстановки  [c.383]

Первые приложения общих уравнений равновесия упругих тел к конкретным задачам были осуществлены, по-видимому, в 1827—1828 гг. находившимися в то время на русской правительственной службе в Петербурге французскими инженерами Г. Ламе и Э. Клапейроном в их Мемуаре о внутреннем равновесии однородных твердых тел В этом мемуаре они рассмотрели задачи о растяжении бесконечной призмы, кручении бесконечного кругового цилиндра, равновесии шара под действием взаимного притяжения его частиц, равновесии полого кругового цилиндра и шара под действием внутреннего и внешнего давления. Далее они выписали некоторые интегралы (с четырех-  [c.54]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]


Распространив полученное соотношение на случай изгиба и кручения при условии постоянства максимального касательного напряжения, И. А. Одинг [326] получил общее уравнение, связывающее предельные напряжения при кручении Ти и при растяжении или изгибе 0и с пределом усталости при кручении т ь определенным при обычном симметричном цикле  [c.183]

Сен-Венан в классических работах по теории кручения и изгиба, опубликованных в 1855—1856 гг., дал на основе общих уравнений теории упругости решение задач изгиба и кручения призматических стержней. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, высказал знаменитый принцип Сен-Венана , позволивший перейти к эффективному решению задач теории упругости, и разобрал большое число конкретных примеров.  [c.5]

Итак, рассмотрев общий случай кручения или задавая ( 2) зависимости (101)— вг, — 0у между перемещениями, так же как производную = 0 ( 51), что приводит всегда первое неопределенное уравнение к виду  [c.156]

Т. е. корню квадратному из правой части общего уравнения сопротивления разрушению от кручения (52) или (243), или из величины, наибольшее значение которой характеризует опасную точку.  [c.271]

В книге приводятся общие уравнения теории упругого равновесия тел, обладающих упругой анизотропией различных типов, как однородных, так и неоднородных. Дается математическая формулировка общих задач равновесия упругого анизотропного тела и наиболее важных проблем — растяжения, кручения, изгиба, плоской задачи, осесимметричной деформации и их обобщений. Даны решения большого числа частных задач, относящихся ко всем разнообразным проблемам, полученные как самим автором, так и другими исследователями. Как правило, все задачи доводятся до явных формул, а в ряде случаев — до таблиц и графиков.  [c.2]

Для разнообразия мы выведем уравнения кручения такого стержня не из общих уравнений главы 3, а независимо.  [c.288]

Последние две главы, восьмая и девятая, посвящены исследованию упругого равновесия анизотропных тел вращения, которые деформируются под действием внешних усилий, но при этом остаются телами вращения. Такого рода деформации возможны лишь для частных случаев анизотропии и для частных случаев распределения нагрузки. Можно различить два вида напряженно-деформированного состояния, при котором тело вращения переходит в тело вращения 1) кручение и 2) осесимметричная деформация. В данной главе мы выводим общие уравнения теории кручения тел вращения и даем решения нескольких задач, представляющих практический интерес.  [c.345]

Общие уравнения теории кручения непрерывно-неоднородных тел вращения, обладающих цилиндрической анизотропией  [c.345]

При выводе общих уравнений мы будем исходить из тех же предположений, которые лежат в основе теории кручения однородного изотропного тела вращения. Именно, поперечные сечения не искривляются и перемещения в радиальных направлениях отсутствуют, т. е. каждое поперечное сечение поворачивается вокруг оси вращения,  [c.346]

Теория изгиба и кручения тонких стержней и нитей, включая теорию спиральных пружин, в течение долгого времени развивалась вне связи с общими уравнениями теории упругости по методам, родственным тем, которыми пользовался Эйлер. Сначала предполагали, что изгибающая пара  [c.35]

Все эти простые результаты были получены значительно раньше, чем были выведены уравнения общей теории кручения. Как видно, в данном случае сечения стержня при кручении остаются плоскими, что явилось поводом для попытки экстраполяции этого закона на все остальные формы поперечных сечений.  [c.256]

Учебник для вузов, в которых сопротивление материалов изучается по полной программе. Книгу в целом отличает глубоко продуманная последовательность изложения - от частного к общему - и разумное повторение материала, позволяющее глубже вникнуть в существо вопроса. В первой части дается традиционный курс сопротивления материалов в элементарном изложении. Во второй части приводятся дополнения по некоторым вопросам, рассмотренным в первой части, а также рассматриваются задачи, требующие применения методов теории упругости. Таковы, например, задачи о кручении стержней, о местных напряжениях, об изгибе пластинок, о кручении тонкостенных стержней. Для возможности более обоснованной трактовки таких задач в книгу включен раздел, посвященный основным уравнениям теории упругости и некоторым наиболее простым задачам этой науки.  [c.234]

Рассмотрим теперь изотропную пластину, усиленную сеткой ребер, часто поставленных как в одном, так и в другом направлениях (рис. 6.35). Такая система проявляет в общем случае различные жесткостные характеристики в направлениях X и у и называется конструктивно-ортотропной плитой. Ее расчет можно приближенно выполнить как расчет условной ортотропной пластины с жесткостями >1, Да и Ds, входящими в уравнения (6.69). Пусть для ребер, параллельных оси х, жесткость на изгиб EJi, на кручение GJ pi, а  [c.181]

Встретившийся здесь прием введения функции напряжений с помощью (9.7.4) или (9.7.7) носит совершенно общий характер. При построении теории сложного сдвига и кручения можно было принять за отправной пункт не кинематическую гипотезу 9.6, а уравнение равновесия (9.1.2) вместе с предположением о равенстве нулю всех остальных компонент напряжения. Представляя Т( и Тг как производные от функции F, мы удовлетворим уравнению равновесия. Из (8.5.8) следует, что при равенстве нулю остальных напряжений как т,, так и Та — гармонические функции. Отсюда следует  [c.294]


Изображаем опасное сечение (рис. IX. 12), направления М , Му и М , в котором, если материал участка одинаково работает на растяжение-сжатие, при расчете на совместное действие изгиба и кручения, не имеют значения. Выписываем (см. У.17) в общем виде уравнение нормальных напряжений при косом изгибе  [c.315]

Предложенная задача дает достаточно широкий простор для исследовании. С одной стороны, можно ограничиться исследованием устойчивости по отношению к осесимметричному опрокидыванию. Такое решение трудностей не представляет. С другой стороны, интересно рассмотреть существование несимметричных форм равновесия и установить условия выхода кольца из плоскости кривизны с кручением. Здесь необходимо будет предварительно вывести уравнения равновесия несколько более общего вида, чем те, которые используются при исследовании устойчивости плоской формы изгиба.  [c.335]

С некоторыми случаями нехватки уравнений статики вы уже познакомились в начале нашего курса, т. е. при рассмотрении вопросов растяжения-сжатия и кручения. Но это знакомство было первым и недостаточно глубоким. Сейчас этот вопрос мы рассмотрим с более общих позиций.  [c.105]

В общем случае Л,/, Bij и Dtj — симметричные матрицы с не-нулевыми компонентами, каждая содержит шесть независимых компонент в соответствии с (4.17). Если структура композита симметрична, то Bij = 0 и отсутствует взаимное влияние, т. е. связь между мембранными характеристиками (деформациями, например) и характеристиками изгиба — кручения. Величины А, В и D преобразуются аналогично Q Ап, 22, Ai2, Лбб, Du, D22, D 2 и Обб положительно определены Л16 = 26 = Oi6 = D26 = О для композитов, состоящих только из слоев, ориентированных взаимно перпендикулярно. Для схем армирования типа [ 0°]s, состоящих из большого числа слоев, величины Die, >26, le и Лгв могут быть существенно малыми по сравнению с другими компонентами жесткостей. Уравнение (4.16) можно преобразовать так, что деформации в плоскости, не связанные с изгибом и кручением (мембранные), и компоненты кривизны и кручения будут выражены через приложенные нагрузки и свойства материала.  [c.147]

Если общая деформация, включающая деформацию ползучести, выражается нелинейной упругой деформацией, зависимость которой от напряжения изменяется с течением времени в соответствии с уравнением (4.33), постепенно увеличивается от а — 1, то распределение напряжений ползучести при изгибе балки или при кручении стержня зависит от времени.  [c.101]

При обсуждении результатов комбинированных испытаний на ползучесть при растяжении—кручении (см. рис. 4.9) отмечено, что при высоком уровне напряжений обнаружено [18] влияние анизотропии материала. В общем, если главные оси напряжений совпадают с главными направлениями анизотропии, то обобщенное уравнение ползучести выражается [26, 27], исходя из уравнения (4.41), следующим образом  [c.106]

На рис. 4.14 показано распределение напряжений в толстостенном цилиндре с отношением наружного и внутреннего радиусов Rq/Ri 2, определенное с помощью уравнения (4.57). Если в этом уравнении принять а= 1, то оно совпадает с уравнением Ламе для упругой деформации. При увеличении показателя степени ползучести а отличие от распределения упругих напряжений увеличивается, что аналогично характеру распределения напряжений при ползучести при изгибе и ползучести при кручении, описанным в разделе 4.1. Напряжения В тангенциальном направлении sq в общем случае при ползучести становятся максимальными на наружной поверхности, возникает градиент напряжений и в радиальном направлении.  [c.109]

В гл. 5...9 изложены основы механики деформируемого твердого тела, на основе которых в дальнейшем (гл. 10... 15) рассмотрены более сложные вопросы, чем в гл. 2...4, традиционные для курса Сопротивление материалов . Это задачи изгиба, кручения, устойчивости стержней. В гл. 15...19 курса на основе полученных ранее (гл. 5...9) общих уравнений механики деформируемого твердого тела излагаются теории пластин и оболочек, а также плоская и пространственная задачи механики деформируемого твердого тела. Такой принцип изложения опробован при чтении курса лекций для студентов специальностей Промышленное и гражданское строительство , программа которого включает в себя как традиционный курс сопротивления материалов, так и раздел теории упругости и пластичности. Объединение частей в единое целое дало возможность более рационально использовать отведенное учебным планом время, а главное — добиться более глубокого понима-  [c.3]

Отметим, что равномерное давление, распределенное по части FD мембраны, статически эквивалентно давлению той же величины, равномерно распределенному по пластинке D, а растягивающие усилия в мембране, действующие вдоль границы этой пластинки, находятся в равновесии с равномерной нагрузкой на пластинке. Следовательно, в рассматриваемом случае может использоваться тот же экспериментальный метод с мыльной пленкой, что и раньше, так как замена части мембраны FD пластинкой D не вызывает изменений в конфигурации и в условиях равновесия остальной части мембраны. Рассмотрим теперь более сложный случай, когда границы отверстия уже не являются траекториями иаирял ений для сплошного вала. Из общей теории кручения мы знаем (см. 104), что вдоль каждой границы функция напряжений должна быть постоянной, однако эти постоянные не могут выбираться произвольно. При рассмотрении многосвязных границ в двумерных задачах было показано, что в подобных случаях необходимо обраи1,аться к выражениям для перемещений, и постоянные интегрирования следует подбирать таким образом, чтобы эти выражения становились однозначными. Аналогичная процедура необходима и по отношению к задачам о кручении полых валов. Постоянные значения функции напряжений вдоль границ следует определять таким образом, чтобы перемещения были однозначными. Тогда будет получено достаточное число уравнений для определения  [c.335]

Большой ш лад в развитие общей теории оболочек внес В. 3. Власов. Им исследовались общие уравнения теории оболочек, разработаны техническая теория оболочек, полу-безмоментпая теория оболочек, предлоясеиа новая теория изгиба и кручения тонкостенных стерл ней открытого профиля. Ему принадлежит заслуга развития нового вариационного метода применительно к решению задач изгиба п устойчивости оболочек. Исследования В. 3. Власова положили начало созданию новой научной дисциплины — строительной механики оболочек.  [c.11]

В главе I мы, как первую задачу, теоретически рассмотренную в сопротивлении материалов, отметили задачу о балке, один конец которой заделан, а другой нагружен силой. Это была задача о баяке, подверженной действию постоянной перерезывающей силы. До Сен-Венана упомянутая задача привлекала внимание многих математикоз. В частности, ею занимались Кулон и Коши. В то же вреяя были предложены также решения задачи кручения, но все они были получены с помощью методов, основанных на сомнительных предположениях. Полученные решения, в свете современных знаний справедливы при некоторых ограничениях, но последние тогда не были ясно сформулированы ). Сен-Венан ) первым ввел задачи об изгибе и кручении в область общей теории (которая приобрела свой законченный вид после того, как Навье вывел общие уравнения теории упругости )).  [c.417]


Еще в 1828 г. Коши и Пуассон применили общие уравнения для оценки пригодности элементарной теории изгиба тонких стержней, а в следующем году Коши вывел приближенные формулы для кручения тонких прямоугольных стержней. Эти исследования Коши дали толчок для развития Сен-Ве-наном общей теории изгиба и кручения призматических стержней, явившейся крупнейшим практическим достижением теории упругости в середине XIX в.  [c.55]

Для того чтобы получить общие уравнения обобщенного кручения, обратимся к уравнениям для сГщего случая упругого равновесия, при котором составляющие напряжения не меняются по длине (см. 18, 19), и положим  [c.259]

До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]

Дальнейшее упрощение достигается, если для оболочки вращения по безмоментной теории рассматривается осееимметричная деформация. В данном случае все функции не зависят от ф, и поэтому в общих уравнениях безмоментной теории оболочек вращения члены, содержащие производные по ф, обращаются в нуль, а производные по 9 оказываются обыкновенными. Кроме того, если положить <72 = 0. то один из видов осесимметричной деформации оболочки — ее кручение относительно оси симметрии — исключается, вследствие чего 5 = 0.  [c.165]

При малых перемещениях и упругих деформациях будет справедлив принцип независимости действия сил (принцип суперпозиции). Этот принцип позволяет легко получить соотношения МГЭ для общего (пространственного) случая деформирования стержня. Для этого необходимо объединить уравнения (2.4), (2.9), (2.10), (2.11) и (2.19) путем квазидиагонализации матрицы фундаментальных функций. Общее уравнение МГЭ представлено ниже, где Аи, Акр, Ар, Ас - матрицы фундаментальных функций изгиба, кручения, растяжения и сдвига G (x, ),  [c.33]

Плоские задачи (задачи кручения и изгиба стержней в постановке Сеи-Венана). Как было установлено выше, эти задачи приводятся к задачам Дирихле и Неймана для уравнений Лапласа и Пуассона, поэтому имеет смысл рассмотреть их общие постановки.  [c.116]

На левом участке стержня (О 2 а) крутящий момент уИкр = = Здесь общее решение дифференциального -уравнения стесненного кручения имеет вид  [c.427]

Здесь X = (Eu), Ev, М, Q) - вектор перемещений и усилий, соответствующих общему решению однородного дифференциального уравнения изгиба оболочки, растяжения или изгиба пластины либо растяжения или кручения кольцевого элемента Хо,ч. 1,ч то же для частного решения неоднородного уравнения АХ — вектор разрьгеов перемещений и усилий в сопряжениях Е - модуль упругости в пределах пропорциональности напряжений и деформаций А - матрица перехода от вектора Xq к вектору Xi нижние индексы О и 1 относятся к начальному и конечному краям элемента.  [c.206]

В этих соотношениях X = w, М, Q вектор радиальных и угловых перемещений, изгибаюш,их и перерезываюш их усилий, соответ-ствуюш их обш ему решению однородного дифференциального уравнения изгиба оболочки или пластины либо кручения кольцевого элемента Хп, Хщ — то же для общего и частного решений неоднородного уравнения АХ — вектор разрывов перемещений и усилий в сопряжениях А — матрица перехода от вектора Хд к вектору Х нижние индексы О, 1 и I, II относятся к верхнему и нижнему (начальному и конечному) краям соответственно одного элемента и составной последовательности N элементов. При этом Хц = X -f Xq Xi = Xj Хц = Xf.  [c.77]

Как видно из рис. 49, экспериментальные точки для исследуемых материалов при кручении и растяжении — сжатии укладываются в общую полосу разбора зависимости Ig Дби (Ig N ). Между неупругой деформацией за цикл и числом циклов до зарождения усталостной трещины в логарифмических координатах имеет место линейная зависимость, что свидетельствует о соответствии полученных результатов уравнению Коффина — Мэйсона  [c.81]


Смотреть страницы где упоминается термин Общее уравнение кручения : [c.185]    [c.481]    [c.7]    [c.20]    [c.133]   
Смотреть главы в:

Расчет элементов конструкций из упругих неоднородных материалов  -> Общее уравнение кручения



ПОИСК



Общие уравнения



© 2025 Mash-xxl.info Реклама на сайте