Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скалярное умножение винтов

СКАЛЯРНОЕ УМНОЖЕНИЕ ВИНТОВ  [c.38]

Скалярное умножение винтов будем обозначать точкой.  [c.38]

Как нетрудно видеть, этот результат вытекает из формулы для скалярного умножения винтов и из распределительного свойства скалярного умножения, интерпретируемого как равенство проекции суммы винтов на ось сумме проекций слагаемых на ту же ось.  [c.46]

Скалярное умножение винтов  [c.46]

Под скалярным произведением двух винтов будем понимать комплексное число, равное скалярному произведению ИХ моторов, отнесенных к какой-нибудь точке приведения. Скалярное умножение винтов будем обозначать точкой. Пусть заданы два винта  [c.46]


СКАЛЯРНОЕ УМНОЖЕНИЕ ВИНТОВ 47  [c.47]

Произведение винтового аффинора на винт справа и слева осуществляется аналогично умножению тензора на вектор справа и слева (см. стр. 60). Совершенно аналогично осуществляется и дифференцирование винтовых аффиноров по скалярному аргументу, так как все правила дифференциального (а также и интегрального) исчисления распространяются на винтовые аффиноры.  [c.78]

Следует отметить известную работу Р. Мизеса, выпущенную в виде двух статей в 1924 г. и [ ], в которой излагается общая часть и приложения так называемого моторного исчисления (мотор — соединение слов момент и вектор , т. е. тот же винт). В этой работе автор вначале исходит из геометрического описания мотора с помощью двух прямых, а затем вводит шесть координат мотора и операции над моторами — скалярное и моторное умножение. Далее вводятся моторные диады и матрицы аффинного преобразования. В моторном, как и в винтовом исчислении, обнаруживается аналогия с векторными операциями. Однако принцип перенесения в работе Мизеса не нашел отражения. Мизесом рассмотрены приложения к динамике твердого тела, к теории упругости и к строительной механике стержневых систем, к гидромеханике и др.  [c.13]

Винтовое исчисление Котельникова выросло из доказанной им теоремы 340 о так называемых винтовых интегралах , частными случаями которых являются интеграл движения центра тяжести системы материальных точек и интеграл площадей. Изучая образование из двух винтовых интегралов третьего при помощи скобок Пуассона, Котельников приходит к операции умножения винтов, аналогичной векторному умножению векторов. Эта операция вместе с операциями, определенными Боллом, позволила Котельникову построить исчисление винтов, вполне аналогичное векторному исчислению. Вияты, представляющие собой совокупности двух коллинеарных, скользящего и свободного, векторов а и а, он записывал также в форме параболических бивекторов a=a-f-ea (е2=0) Клиффорда. По аналогии со скалярным и векторным произведениями Гамильтона Котельников определял скалярное и винтовое произведения винтов аир как скалярную и винтовую части 5ар и Fap произведения ар бивекторов аир. Заметим, что относительный момент двух винтов у Болла представляет собой сумму скалярных произведений скользящих и свободных векторов двух винтов.  [c.340]

В 1895 г. опубликовано выдающееся сочинение А. П. Котельникова [27], в котором впервые построено собственно винтовое исчисление. В этой работе использованы комплексные числа с множителем со, введенным Клиффордом, умножением на которые вектор преобразуется в винт. Главная заслуга Котельникова состоит в том, что он впервые в наиболее полном и ясном виде сформулировал принцип перенесения . Котельникову путем, как он выразился, небольшой уловки, заключавшейся в преобразовании бикватерниона Клиффорда в кватернион с комплексными коэффициентами, удалось установить, что все формулы теории кватернионов суть неразвернутые формулы бикватернионов, т. е. установить тождественность формул для тех и других. Это, в свою очередь, привело к выводу, что все операции векторного исчисления превращаются в операции винтового исчисления, если в них все вещественные величины заменить комплексными с множителем со. Благодаря этому удалось одним уравнением заменить не три, как в векторном исчислении, а шесть скалярных уравнений, что придает большую компактность записи условий и решению многих задач.  [c.4]


В несколько ином направлении идеи винтового исчисления развиты учеником Штуди — известным немецким ученым Р. Ми-зесом, опубликовавшим в 1924 г. две статьи [53, 54], в которых излагается общая часть и приложения моторного исчисления. В этой работе за исходный образ принята совокупность двух прямых (мотор), эквивалентная винту, а затем введены шесть координат мотора и определены операции над моторами, выражаемые через координаты моторов, — скалярное и моторное умножение. Далее введены моторные диады и матрицы афинного преобразования. При этом обнаружена аналогия с векторными операциями. Однако принцип перенесения в работе Мизеса не был использован.  [c.6]


Смотреть главы в:

Метод винтов в прикладной механике  -> Скалярное умножение винтов

Винтовое исчисление и его приложения в механике  -> Скалярное умножение винтов



ПОИСК



Умножение

Умножение скалярное



© 2025 Mash-xxl.info Реклама на сайте