Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия струй и волн

Энергия струй и волн  [c.118]

Таким образом, одна причина повышения к.п.д. излучателя с косым скачком, по сравнению с к.п.д. генератора Гартмана, по-видимому, заключается в повышении кинетической энергии за скачком и некотором уменьшении потерь в самом скачке. Кроме того, возникновение колеблющегося косого скачка (при размерах области генерации, сравнимых с длиной излучаемой волны) может привести к увеличению нормальной составляющей скорости на поверхности струи и, следовательно, к повышению отдачи акустической энергии за ее пределы. Поэтому замена прямого скачка косым, вероятно, может улучшить условия излучения в окружающую среду.  [c.62]


Примерами инструментов первой группы (издающих звуки аэродинамически) могут служить некоторые духовые инструменты, в частности блок-флейта (продольная флейта, или рекордер) и диапазонные органные трубы. Произвести звук без подачи энергии невозможно. Мы уже видели, что звук —это просто способ передачи энергии сквозь воздух или какую-либо другую среду в виде волн давления, в которых энергия непрерывно и быстро переходит из одной формы в другую из потенциальной в кинетическую и обратно. При колебании поршня в трубе энергию поставлял вращающийся коленчатый вал, в случае пульсирующего баллона — насос. В духовой инструмент энергию подает сам музыкант, который давлением своих легких вдувает в него модулированную струю воздуха. На рис. 5 изображена блок-флейта. Воздух, сжатый в легких, вдувается через узкую щель мундштука и выходит из него в виде короткой струи при этом то по одну, то по другую сторону от струи образуются вихри. Они возникают потому, что по обе стороны от быстро движущегося потока воздуха давление падает. Это можно увидеть, например, если дунуть на монетку, лежащую на столе монетка перевернется. Падение давления вызывает отсасывание струи с боков поэтому большая скорость воздуха, выходящего из мундштука, и турбулентность струи приводят к образованию вихрей. Затем эти вихри сталкиваются с клиновидным выступом амбушюра флейты и проходят сверху или снизу выступа. Практически именно положение этого выступа определяет частоту образования вихрей чем меньше расстояние от отверстия мундштука до выступа, тем чаще образуются вихри. Точно так же, чем сильнее дует музыкант, тем больше скорость воздушной струи и частота образования вихрей.  [c.38]

Для уменьшения поступления в пар примесей с капельным уносом целесообразно добиваться уменьшения влажности насыщенного пара. В котлах барабанного типа пар отводится из барабана рядом труб, расположенных по всей его длине у его верхней образующей. Такое расположение пароотводящих труб позволяет увеличить высоту парового объема. Пароводяная смесь выбрасывается в барабан через трубы, которые распределены по длине и сечению барабана неравномерно они могут быть выведены как в водяное, так и в паровое пространство. Все трубы присоединяются таким образом, что выходящие из них пароводяные струи направлены к центру поперечного сечения барабана. Через каждую трубу в современных котлах идет до 1000—1500 кг пароводяной смеси в час со скоростью 0,3—0,8 м/с. В водяном объеме барабана кинетическая энергия струй уменьщается, однако не для всех струй одинаково, в результате чего, если не принять специальных мер, на поверхности зеркала испарения будут возникать выбросы, гребни, волны и фонтаны. От их разрушения и столкновения в паровое пространство может поступить огромное количество брызг и всплесков.  [c.132]

Графики скоростей кромок отдельных струй синхронизованы между собой и фактически ложатся на единую кривую. Максимальные скорости смещения границ вторичных струй более чем в 2 раза превышают скорость тела, что свидетельствует об эффективности процесса передачи энергии от внутренних волн к локализованным вторичным струям.  [c.47]


В основе всех существующих в настоящее время представлений о механизмах воздействия звука на струйные течения лежит представление о гидродинамической неустойчивости свободного сдвигового слоя струи и струи в целом и об упорядоченных структурах, возникающих в струях вследствие этой неустойчивости. Наличие таких упорядоченных структур как в ламинарных, так и в турбулентных струях, подтверждено многочисленными экспериментальными и теоретическими исследованиями. Предлагаемые различными исследователями механизмы воздействия звука на струйные течения охватывают все возможные способы воздействия на такие упорядоченные структуры. В частности, предполагают, что в турбулентных струях возможно прямое взаимодействие между звуком и турбулентной структурой потока, прямое воздействие звука на процесс передачи энергии от больших турбулентных вихрей к меньшим [1]. Другая точка зрения состоит в том, что звуковые колебания действуют на струю у среза сопла вблизи точки отрыва потока и приводят к образованию вихрей, которые по мере их распространения вдоль струи, вследствие неустойчивости струи и/или ее сдвигового слоя могут усиливаться или ослабляться в зависимости от частоты воздействия (см., например, [2]). Это наиболее распространенная точка зрения на процесс взаимодействия звука со струями. Высказывается также предположение, что возможна постоянная связь между звуковой волной, воздействующей на слой смешения, и возбужденной волной неустойчивости на протяжении нескольких длин волн неустойчивости [3] и, наконец, существует мнение, что взаимодействие звука со струей происходит через воздействие на поверхность раздела между струей и окружающим пространством [4].  [c.39]

При малых скоростях легкой фазы, составляющих, например, для системы вода — воздух при комнатной температуре п атмосферном давлении менее 1 м/с, основная доля транспортируемых капель генерируется за счет разрыва оболочек. Относительно крупные капли, генерируемые за счет дробления жидкости струями пара, кольцевых волн и выбрасываемых ими столбиков жидкости и другими процессами того же типа, подскакивают относительно невысоко. Вместе с тем небольшая кинетическая энергия пара приводит к малой вероятности генерирования за ее счет мелких капель, скорость витания которых была бы близка к невысоким скоростям газового, потока. Поэтому можно считать, что в этой зоне скоростей основное количество транспортируемых капель действительно генерируется за счет разрыва оболочек.  [c.286]

Построено точное решение двумерной нестационарной задачи о взаимодействии двух одно-мерных не автомодельных волн сжатия Римана, каждая из которых порождает неограниченный локальный рост плотности газа в окрестности подвижного сжимающего поршня. Решения получены при специально согласованных показателях адиабаты и угла, под которым взаимодей-ствуют волны Римана. Рассмотрены случаи ограниченных и неограниченных затрат энергии на такое сжатие. Показано, что в обоих случаях в области интерференции волн Римана возникает кумулятивная струя газа, в которой степени кумуляции газодинамических величин такие же как и в процессе неограниченного автомодельного двумерного сжатия газовой призмы. Таким об-разом, показано, что достижение высоких локальных степеней кумуляции энергии может быть реализовано в рассматриваемых процессах для широкого класса законов управления безударным сжатием. Обнаружено явление частичного коллапса газа.  [c.473]

Основное отличие пространственных течений от одномерных в рассматриваемом аспекте инициирования экзотермической реакции заключается в большой сдвиговой деформации среды. Большие динамические деформации сдвига сами по себе могут инициировать реакцию [92, 132], однако, в силу меньшей локализации энергии, этот процесс значительно медленнее обычно наблюдаемых в ударных волнах. При воздействии на заряд ВВ кумулятивной струи или компактного ударника возможно воспламенение ВВ в результате поверхностного трения с последующим переходом горения в детонацию. Этот механизм инициирования не реализуется в экспериментах с ударными волнами и требует специального рассмотрения.  [c.313]

Механизм распыления жидкости под воздействием ультразвуковых колебаний, распространяющихся внутри нее, довольно хорошо изучен Существующая в настоящее время кавитационно-капиллярная теория [23] позволяет удовлетворительно объяснить процесс дробления струи. Совсем иначе обстоит дело, когда речь идет о распылении жидкости при озвучивании ее поверхности со стороны газообразной фазы. Несмотря на выдвинутые Буше предположения о кавитационном характере распыления, эта гипотеза может быть полностью отвергнута ввиду того, что на границе газ—н<идкость падающая энергия почти полностью отражается. Однако из опытов известно, что при падении интенсивной звуковой волны на свободную поверхность жидкости последняя приходит в интенсивное колебательное движение, причем образуются гребни и фонтанчики, с верхушек которых происходит разбрызгивание.  [c.591]

Взаимодействие волн носит характер перераспределения энергии между резонансными колебаниями. Рассмотрим более подробно случай начального преобладания уровня волн на меньшей частоте, что характерно для спектров возмущений в ламинарных струях. Оказалось, что интенсивность и направленность перераспределения определяются взаимной ориентацией волновых амплитуд, т.е. величиной  [c.154]


Из условия симметрии за скачками СВ и СВ скорость должна стать параллельной оси потока, т. е. линии тока должны повернуться в обратно м направлении на угол б. В этой области устанавливается давление, повышенное по сравнению с давлением среды. Следовательно, в точках В и В1 со стороны -струи давление более высокое и из этих точек распространяются волны разрежения. При переходе через волны разрежения давление падает до давления окружающей среды и линии тока отклоняются от оси — струя расширяется. После пересечения волн разрежения давление равно р. В точках выхода волн разрежения на свободную границу струя имеет ширину, равную ААх. Рассматриваемая группа режимов характеризуется. потерями энергии в струе, обусловленными возрастанием энтропии в системе косых скачков уплотнения. Поле давлений по оси и в поперечных сечениях приобретает значительную неравномерность.  [c.351]

В литературе [11, 14 делается вывод о сопоставимости количесз в теплоты, выделяемых в ударных волнах и пограничном слое струи на стенках полузамкнутой емкости. 7 акже показано, что по мере роста относительной величины пульсаций давления на входе в полость доминирующим источником выделения тепла становится процесс диссипации энергии в ударных волнах.  [c.178]

В конденсирующих инжекторах используются сопла Лаваля. Расчетный режим работы такого сопла предусматривает равенство давлений на срезе сопла и в окружающей среде, куда происходит истечение. В конденсирующем инжекторе за срезом парового сопла продолжается дальнейшее расширение парового потока, обусловленное конденсацией пара на жидкости, т. е. паровое сопло конденсирующего инжектора работает в режиме недорасширения. Однако на выходных кромках сопла в месте встречи струй пара и жидкости возможно появление не только волн разрежения, но и скачка уплотнения или, по крайней мере, системы волн сжатия. В работе [2 ] указывается, что при определенных соотношениях кинетической энергии жидкостного и парового потоков в сечении встречи струй в сверхзвуковом потоке пара возникает скачок уплотнения. Тем не менее, в непосредственной близости от среза сопла наблюдается понижение давления пара до минимального значения в камере смешения Рктш- Оно зависит, прежде всего, от коэффициента инжекции и и температуры охлаждающей жидкости. 0 объясняется изменением температуры межфазной поверхности, определяющей статическое давление насыщения. При уменьшении и и увеличении температуры охлаждающей жидкости величина тш увеличивается, а соответствующее сечение сдвигается вверх по потоку.  [c.125]

Способы получения У. к. весьма разнообразны почти все способы получения колебаний пригодны и для У. к. Не слишком мощные звуки проще всего получаются свистком Гальтопа (фиг. 1), представляющим воздушный резонатор, собственная частота которого может меняться от 10 ООО до 30 ООО Hz и против отверстия которого направляется струя воздуха. Мощность такого свистка невелика,и во всех ни- кеописываемых спосо -бах источником энергии ультразвуковой частоты является переменный электрич. ток,получаемый обычно от автоколебательных электрич. контуров с электронной лампой исключение представляет только поющая дуга (см.), с к-рой Некле-паевым [ ] в 1911 г. были получены У. к. и волны с частотами до 3 500 000 Hz, что соответствует длине волны ок. 0,1 мм. Волны были получены в воздухе, и оказалось, что последний весьма сильно их поглощает. Первым мощным источником У. к. был пьезоэлектрич. передатчик Ланжевена [ ], предназначенный для работ в воде. Основною частью передатчика Ланжевена является пластинка Q кварца (фиг. 2), вырезанная перпендикулярно к электрической оси и снабженная плотно приклеенными к ней обкладками А, А. Если подводить к ним переменный ток, то вследствие пьезоэлектрич. аффекта (см. Пьезоэлектричество и Пьезокварц) пластинка кварца расширяется и сжимается с частотою, равной частоте переменного тока. При подходящем выборе частоты, когда собственные колебания передатчика попадают в резонанс с током, они становятся весьма мощными и излучают большую ультразвуковую энергию. В подводном передатчике Ланжевена только одна пластинка А находится в соприкосновении с водою, другая же заключена в корпус, показанный на фиг. 2 схематически пунктиром. Такие передатчики строят обычно на частоты ок. 30 000- 0 ООО Hz.  [c.263]

Помимо прибойной зоны, где волны начинают постепенно разрушаться, различают еще так называемую приурезовую зону, расположенную между вертикалями 1 з—1 з и В пределах этой зоны происходит окончательное разрушение волн и образование периодических накатов прибойного потока на откос берега в виде сильно аэрированной струи Ст (см. рисунок). Кинетическая энергия струи Ст по мере ее поднятия по откосу постепенно уменьшается и затем вода, образующая данную струю, скатывается вниз. Высота наката ли в некоторых случаях представляет значительный практический интерес.  [c.550]

Расчет показывает, что поле такой сверхбыстродвижущейся частицы будет сильно возмущено (подобно струе за кораблем или ударной волне за ультразвуковым самолетом) и начнет тормозить частицу, в результате чего последняя теряет энергию, которая выделяется в среде в форме черепковского свечения.  [c.235]

Схема совершенного гидравлического прыжка в прямоугольном русле с горизонтальным дном показана на рис. 4.1. В сечении 1-1 глубина потока Hi, скорость Vj = onst, в сечении 2-2 глубина потока, скорость V2 = onst. На расстоянии 1 р между сечениями и 2-2 имеется стоячая волна изменения глубины. В этой волне существует так называемый транзитный диффузорный поток, а давление в нем поддерживается реакцией части потока, образующего обратную брызговую струю, падающую в набегающий поток и формирующую вапец или падающую волну. Многочисленные исследования гидравлического прыжка [33-35] указывают на то, что в нем происходит значительная потеря полной энергии потока, доходящая до 70% первоначального запаса, без учета потерь на преодоление внешних сил на длине /пр.  [c.51]

Существует ряд явлений, родственных Э., в к-рых перенос носителей заряда осуществляется не электрич. полем, а градиентом темп-ры (см. Термоэлектрические явления), звуковыми волнами (см, Акустоэлектрический эффект), световым излучением (см. Увлечение электронов фотонами) и т. п. Э. жидкостей, газов и плазмы обладает рядом особенностей, отличающих её от Э. твёрдых тел (см. Электрические разряды в газах, Электрический пробой. Электролиз). Э. М. Эпштейн. ЭЛЕКТРОРАКЁТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)—космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич, энергии, Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям я управляющую функционированием ЭРД, ЭРД—двигатели малой тяги, действующие в течение длит, времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл.-магн. либо эл.-статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердотопливных ракетных двигателях это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл.-хим. двигатели (ЭХД) и ионные двигатели (ИД).  [c.590]


Из-за высокого коэффициента отражения металлов в диапазоне ИК-волн для плавления и испарения их с помощью ИК-лазера требуется большое количество тепловой энергии, и поэтому образуется довольно большая зона термического влияния. Расплав должен удаляться струями газа, а это делает невозможным использование прецизионной микрообработки. С другой стороны, высокая плотность пиковой мощности излучения (10 -10 Вт/см ), генерируемая короткими импульсами ЛПМ на поверхности материала, приводит к удалению образовавшихся паров и жидкости в результате микровзрывов. Зона термического влияния может быть на порядок меньше, чем у других лазеров [233]. Эксимерные УФ-лазеры могут образовывать меньшую зону термического влияния, чем ЛПМ, однако ЛПМ обрабатывает материал гораздо быстрее, так как плотность мощности его и, следовательно, поверхностная температура мишени гораздо выше. Применение ЛПМ также более эффективно и в тех случаях, когда необходимо сделать надрезы глубже 0,5 мм [240, 245.  [c.236]

Потоки с вязкостным сопротивлением. Так как каждая жидкость обладает вязкостью, абсолютная величина которой больше нуля, заявление, что ее обычно можно считать равной нулю, лишь относительно верно. Иными словами, любое явление потока, для которого влиянием вязкости можно пренебречь при определенной величине числа Рейнольдса, может подвергаться значительному воздействию вязкости при более низких числах Рейнольдса. Так, известно, что рассмотренные в п. 12 характеристики струи подвергаются возрастающему воздействию вязкости при уменьшении Не, когда поток становится полностью ламинарным. Волны, разбиравшиеся в предыдущем пункте, также подвержены вязкостному замедлению, когда масштаб и скорость становятся малыми или когда длина волны становится очень большой в действительности пренебрежение вязкостью при всяком анализе волнового движения правомерно, поскольку энергия любой волны в конечном счете диссипируется вязкостным сопротивлением. С другой стороны, конечно, существует очень много примеров практического направления, в которых роль вязкости является первостепенной и пренебречь ею невозможно.  [c.27]

Сварка взрывом. При сварке взрывом энергия от детонации взрывчатых веществ (ВВ, рис. 1.8) подается на расположенные с зазором А и под некоторым углом а друг к другу свариваемые поверхности изделий (И). Запал (3) расположен в вершине угла. При соударении поверхностей между ними образуется кумулятивная струя Р , очищающая детали от загрязнений и окислов. Взаимные тангенциальные перемещения сварргва-емых поверхностей и образование волн в точках соударения обеспечивают прочное соединение деталей [27].  [c.31]

В опытах, описанных в предыдущем разделе, колебания воздуха являются вынужденными, так как высота определяется внещним источником, а не (в сколько-нибудь значительной степени) длиной столба воздуха. Правда, строго говоря, все незатухающие колебания являются вынужденными, так как свободные колебания не могут продолжаться без затухания, если только трение не отсутствует полностью, т. е. если случай не идеальный. Тем не менее практически важно отличать колебания столба воздуха, возбуждаемые продольно колеблющимся стержнем или камертоном, от таких колебаний, как колебания органной трубы или поющего пламени. В последних случаях высота звука зависит, главным образом, от длины столба воздуха, функции же воздушного потока или пламени ) заключаются только в восстановлении энергии, потерянной вследствие трения и сообщения с" внешним воздухом. Воздух в органной трубе следует рассматривать как столб, колеблющийся почти свободно, причем нижний конец, через который проходит струя воздуха, трактуется грубо как открытый, а верхний конец — как открытый или закрытый, смотря по тому, что имеет место. Так, длина волны основного тона закрытой трубы в четыре раза больше длины трубы, и по всей длине трубы, за исключением концов, здесь нет ни узла, ни пучности. Обертоны трубы—нечетные гармоники дуодецима, большая терция и т. д., соответствующие различным подразделениям столба воздуха. Например, в случае дуодецимы имеется узел в точке трисекции, ближайшей к открытому концу, и узел в другой точке трисекции, посредине между первой и закрытым концом трубы.  [c.66]

ГИДРОДИНАМИЧЕСКИЕ ИЗЛУЧАТЕЛИ — устройства, преобразующие часть энергии турбулентной затопленной струи жидкости в энергию акустич. волн. Работа Г. и. основана на генерировании возмущений в жидкой среде в виде нек-рого поля скоростей и давлений при взаимодействии вытекающей из сопла струи с препятствием определённой формы и размеров либо прп принудительном периодич. прерывании струи. Эти возмущения оказывают обратное действие на основание струи у сопла, способствуя установлению автоколебательного режима. Механизм излучения звука возмущениями мол ет быть различным в зависимости от конструкции Г. п., к-рая принципиально отличается от конструкции газоструйных излучателей для воздушной среды, хотя Г. и. и называют лшдкостными свистками.  [c.79]

Появление на поверхности струи фонтана зон посветления в лучах осветительного устройства (см. 1 гл. 3) — есть результат диффузного рассеяния света от сетки стоячих капиллярных волн. В зависимости от объема и длительности существования кавитационной области в струе, а также вязкости озвучиваемой жидкости, можно видеть разнообразные картины образования капиллярных волн и выбросов тумана. Наблюдается выделение тумана в форме симметричных струй (см. рис. 22, г), являющееся следствием возбуждения колебаний различных мод на поверхности бусинок струи, недовозбуждение бусинок (см. рис. 22, в), когда амплитуда колебаний поверхности струи превосходит пороговую амплитуду возбуждения капиллярных волн, но в то же время меньше порога каплеобразования (см. 1 гл. 4) и т. д. Кавитационная область, инициируя описанные явления, переносится потоком жидкости в верхние участки струи, а затем исчезает там вследствие дефицита акустической энергии и разрушения струи. Следующий цикл распыления возникает в результате появления нового зародыша кавитации, и т. д.  [c.379]

За пересекающимися волнами разрежения (в области 3) устанавливается давление, меньшее давления окружающей среды (струя перерасширена). В области 4 после пересечения волн сжатия давление повышается до давления в выходном сечении сопла ЛЛ . К сечению струя суживается и ширина ее равна ширине выходного сечения АА . В областях 1, 3 и 4 линии тока прямолинейны и параллельны оси сопла. В областях 2 линии тока также прямолинейны и параллельны, но расположены под углом 6 к оси сопла. Для рассматриваемой первой группы режимов при принятых допущениях потерь энергии в струе нет.  [c.350]

ГИДРОДИНАМИЧЕСКИЕ ИЗЛУЧАТЕЛЬ, устройство, преобразующее часть энергии турбулентной затопленной струи жидкости в энергию акустпч. волн. Работа Г. и. основана на генерировании возмущений в жидкой среде при вз-ствии вытекающей из сопла струи с препятствием определённых формы и размеров либо при принудительном периодич. прерывании струи. Эти возмущения оказывают обратное действие на основание струи у сопла, способствуя установлению автоколебат. режима. Механизм излучения звука может быть различным в зависимости от конструкции Г. и.,  [c.119]


Смотреть страницы где упоминается термин Энергия струй и волн : [c.427]    [c.45]    [c.466]    [c.411]    [c.214]    [c.220]    [c.316]    [c.33]    [c.183]    [c.279]    [c.370]    [c.48]    [c.294]    [c.435]   
Смотреть главы в:

Машины энергии  -> Энергия струй и волн



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Струя

Энергия в волне



© 2025 Mash-xxl.info Реклама на сайте