Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние морских организмов на коррозию

ВЛИЯНИЕ МОРСКИХ ОРГАНИЗМОВ НА КОРРОЗИЮ  [c.430]

Такой характер влияния скорости движения на коррозию проявляется лишь в тех случаях, когда сталь все время находится в непосредственном соприкосновении с движущейся водой. Обрастание морскими организмами уменьшает скорость движе-  [c.406]

Сравнительные испытания необходимо начинать одновременно. Отмечается, что образцы, выставленные в ноябре, корродируют интенсивнее, чем те, которые выставлены в апреле-При исследовании влияния глубины погружения образцов на скорость коррозии рекомендуется создавать электрический контакт между одинаковыми образцами, погруженными на различную глубину. При испытании на плавающих установках с постоянной линией водораздела следует иметь в виду возможность изменения ватерлинии вследствие постоянного увеличения веса образцов и плавающей конструкции из-за скопления на них морских организмов. При испытании в зоне прилива при неполном погружении образцов рекомендуется учитывать защит-216  [c.216]


Потери веса стали при постоянном погружении в морскую воду практически прямо пропорциональны времени пребывания в воде. Хотя накопление продуктов коррозии и обрастание морскими организмами создают, казалось бы, менее агрессивные условия на поверхности металла, чем при свободном соприкосновении его с морской водой, тем не менее скорость коррозии под этим Слоем не изменяется во времени. Другими словами, указанные накопления являются причиной установления некоторой предельной скорости коррозии, после чего они уже не оказывают никакого влияния. Эта предельная скорость устанавливается, повидимому, в течение первого года испытаний (при  [c.402]

Так как морская вода обладает хорошей электропроводностью, а на практике обычно приходится сочетать различные металлы и сплавы в сооружениях, подвергающихся действию морской воды, очень часто имеет место гальваническая коррозия. Однако кальций, магний и стронций, присутствующие в морской воде, могут осаждаться в виде углекислых солей на катодных поверхностях. Влияние этих отложений (а также обрастания морскими организмами) должно проявляться в снижении гальванического действия и в распределении гальванической защиты на большие участки катодных поверхностей. Обрастание морскими организмами способствует также равномерности коррозии анодных поверхностей вследствие уменьшения электропроводности среды у поверхности металла.  [c.449]

Влияние продуктов коррозии. Физические свойства твердой гладкой поверхности, которая представляет собой отличное основание для закрепления морских организмов, могут измениться после того, как эта поверхность погружена в морскую воду. Начальное обрастание на обычных сталях может быть столь же прочным, как и на нержавеющих, однако на обычных сталях очень быстро образуются продукты коррозии, причем изменяется характер поверхности. При этом организмы прикрепляются не к самому металлу, а к слою продуктов коррозии. Прочность опоры в этом случае равна прочности удерживания слоя ржавчины металлом. Можно ожидать, что на таком материале, как нержавеющая сталь, где пленка продуктов коррозии ничтожна, закрепившийся организм удержится в течение всей своей жизни.  [c.464]

Начинать испытания материалов, подлежащих сравнению, нужно в одно и то же время. Образцы, выставленные на испытание в апреле, будут не так корродировать, как выставленные в ноябре. Большое влияние оказывают па коррозию образцов морские организмы, особенно, если испытание начинается весной или летом, когда они очень быстро прикрепляются к образцам и развиваются на них.  [c.1127]

В следующей главе рассмотрено влияние микроорганизмов на разрушение металла в морской воде. Обсуждаются эксперименты в таких средах, где важным фактором является наличие на поверхности металла бактерий. Как продолжительная, так н кратковременная экспозиция конструкционной стали в морской воде пригодной для роста микроорганизмов, показывает, что эти организмы оказывают существенное влияние на коррозионные процессы. Необходимы дальнейшие исследования, направленные на изучение возможности замедления коррозии путем селективного ингибирования деятельности бактерий, усиливающих коррозию.  [c.10]


Целью морских коррозионных испытаний является установление коррозионной стойкости металлов в море, защитных свойств различных покрытий в морской воде, выяснение условий обрастания морских конструкций живыми организмами, а также влияния продуктов их жизнедеятельности яа характер и скорость коррозии металлов. Испытания в море, так же как и атмосферные испытания, проводятся на специальных станциях с применением специальных стендовых установок. Морские коррозионные станции располагаются, как правило, в защищенных бухтах. Размещение их в портах или вблизи от них не всегда целесообразно в связи с возможным засорением воды нефтью и другими отбросами порта. По условиям коррозии [322] испытания металлических сооружений в море можно разбить [323] на следующие группы  [c.209]

В связи с широким применением сталей в морских конструкциях данные о скоростях коррозии этих материалов в различных морских водах и о влиянии различных морских организмов на коррозию представляют большой интерес для ВМС США. В данном докладе рассмотрен вопрос о том, в какой степени некоторые морские организмы влияют на коррозию стали, а такхм приведены данные о стационарных скоростях коррозии углеродистой стали в различных морских средах в районах, расположенных меиаду 9 и 51° северной широты. Показано, как, используя эти данные, можно оценить коррозионные потери при продолжительной экспозиции.  [c.441]

Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки.  [c.453]

Бактерии также оказывают влияние на скорость коррозии. Суль-фатвосстанавливающие бактерии, встречающиеся в донных отложениях и в иле, вырабатывают сульфиды, агрессивные по отношению к таким металлам, как сталь и медь. В то же время биологическое обрастание может способствовать защите металла от коррозии. Сплошное покрытие из морских организмов на стали может уменьшать скорость ее коррозии, препятствуя доставке кислорода к поверхности металла. При наличии продуктов обмена веществ, например маннита, образующегося при воздействии бактерий на водоросли, коррозия некоторых металлов может усиливаться.  [c.9]

Поскольку измейение солености сопровождается, как правило, и другими эффектами, то суммарное влияние этих изменений на коррозионные процессы следует определять в каждом конкретном случае отдельно. Например, растворимость кислорода в воде Каспийского моря должна быть существенно ниже, чем в морасой воде с соленостью 35 %о. Коррозия в разбавленной морской воде, встречающейся в устьях рек, может быть более сильной, хотя сам по себе электролит может быть менее агрессивным. В отношении растворенных карбонатов обычная морская вода, как правило, ближе к состоянию насыщения, тогда как разбавленная морская вода не насыщена и в ней менее вероятно образование осадка карбонатного типа, что приводит к усилению коррозии. В разбавленной морской воде затруднена, а иногда и совсем невозможна жизнедеятельность морских организмов, в результате чего уменьшается тенденция к образованию на металле защитного слоя при биологическом обрастании.  [c.23]

Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излишними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением.  [c.441]


Большинство предшествующих исследований коррозии, вызванной суль-фатвосстанавливающими бактериями, было посвящено почвенной коррозии или влиянию лабораторных культур бактерий. Очень мало внимания уделялось важной роли сульфатвосстанавливающих бактерий в морских средах. Рассмотренные выше результаты натурных коррозионных испытаний, проведенных Научно-исследовательской лабораторией ВМС США, показывают, что эти анаэробные бактерии оказывают определяющее влияние на коррозию конструкционных сплавов на основе железа в океане. Во всех местах, включая полусоленые воды бухты Чисапик, сульфатвосстанавливающие бактерии оказывали воздействие на металл. К концу первого года экспозиции коррозионные продукты, содержащие сульфид железа, были обнаружены на большинстве образцов. Питтинг на всех пластинах был умеренным. Отдельные раковины или участки с толстым слоем отложений не приводили к образованию более глубоких питтингов. В результате деятельности анаэробных бактерий на всех металлических поверхностях под образовавшимся слоем продуктов коррозии и приросших морских организмов возникал мягкий, плохо сцепленный с металлом слой, состоявший в основном из сульфида железа. При наличии такого слоя расположенные над ним продукты коррозии и обрастания легко удаляются большими целыми кусками. Проведенные испытания показали, что при образовании на металле в процессе обрастания достаточно толстого сплошного покрытия создаются анаэробные условия. При этом процесс коррозии определяется бактериальной активностью.  [c.450]

Органические вещества. Естественные водные среды содержат большие или меньшие количества органики, как живой, так и неживой. Неживые органические примеси, например частицы торфа, могут усиливать коррозионную активность воды, делая ее кислой. Однако в большинстве случаев живые организмы оказывают, по-видимому, гораздо большее влияние на коррозию. В естественной морской воде происходит обрастание ракушками, а в пресной воде— водорослями. Кроме того, существует и целый ряд видов бактерий, таких как суль-фатвосстанавливающие, которые могут влиять на процесс коррозии в условиях погружения.  [c.13]

В результате лабораторных экспериментов в морской воде Хамфри Дэви [1] обнаружил в 1824 г., что медь можно полностью защитить от коррозии контактированием с железом или цинком. Он рекомендовал применять катодную защиту кораблей с медной обшивкой с использованием жертвенных анодов из железа, которые присоединялись к корпусу отношение поверхности железа к меди рекомендовалось приблизительно 1 100. При практическом осуществлении этого способа, как и предсказывал Дэви, скорость коррозии медной обшивки значительно снизилась, однако защищенная катодной поляризацией медь обрастала морскими организмами. Незащищенная медь, при растворении которой на поверхности создается достаточная концентрация ионов меди для отравления таких организдюв, не обрастает ими. Поскольку обрастание уменьшало скорость судов в плавании. Британское адмиралтейство отвергло это предложение. После смерти X. Дэвн в 1829 г. его двоюродный брат Эдмунд Дэви (профессор химии в Королевском Дублинском университете) с успехом защищал изготовленные из железа бакены присоединением к ним цинковых брусков, а Роберт Маллет в 1840 г. создал цинковый сплав, пригодный для изготовления жертвенных анодов . После того как деревянные корпуса судов были заменены стальными, присоединение цинковых плит вошло в практику эксплуатации всех адмиралтейских судов. Это обеспечивало локальную защиту, особенно против влияния контакта с бронзовым винтом.  [c.172]

Морская коррозия аналогично почвенной протекает как электрохимический процесс с кислородной деполяризацией. Вода различных морских водоемов содержит от 1 до 3,8% легкодиссоцинру-ющих солей и поэтому обладает высокой электрической проводимостью. Морская вода, кроме того, хорошо аэрирована и содержит до 0,04 г/л кислорода. Это делает ее достаточно активной в коррозионном отношении. Разрушение металлов нередко усугубляется влиянием механического и биологического факторов (эрозия и кавитация, обрастание конструкций морскими растительными и животными организмами).Особенное усиление коррозии наблюдается вблизи ватерлинии. Это объясняется легким доступом кислорода к металлу и ухудшением условий для образования и сохранения защитных пленок из продуктов коррозии. На скорость коррозии в морской воде сильное влияние оказывает окалина создавая катодные участки, она может в десятки раз увеличивать обычную для морских условий скорость коррозии.  [c.157]


Смотреть страницы где упоминается термин Влияние морских организмов на коррозию : [c.442]    [c.61]    [c.37]    [c.217]    [c.268]    [c.17]   
Смотреть главы в:

Морская коррозия  -> Влияние морских организмов на коррозию



ПОИСК



Еж морской

Коррозия влияние

Коррозия морская



© 2025 Mash-xxl.info Реклама на сайте