Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние потенциала на скорость электрохимических процессов

ВЛИЯНИЕ ПОТЕНЦИАЛА НА СКОРОСТЬ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ  [c.44]

Известно [ 71,72,73]/ что в случае электрохимической коррозии растягивающие напряжения, снижая электродный потенциал, ускоряют коррозионные процессы, протекающие на поверхности металлов. По вопросу влияния напряжений на скорость обезуглероживания стали водородом сведений, в литературе не имеется. В связи с этим было проведено исследование влияния напряженного состояния на скорость водородной коррозии стали.  [c.147]

Данный способ различения преобладающего влияния концентрационной и химической поляризаций на общую величину отклонения потенциала электрода для определенной скорости электрохимического процесса недостаточно полон и универсален. Это связано с тем, что величина вязкости растворов может колебаться в широких пределах. Следовательно, значения энергии активации при преобладании концентрационной поляризации могут различаться весьма существенно. В то же время возможны 22  [c.22]


Синергетический характер поведения материала у кончика трещины выражен в использовании сложного комплекса параметров в описании процесса роста трещины. В первую очередь используется водородный показатель среды pH, электрохимический потенциал Е , а также частота нагружения и асимметрия цикла. Суммируя сказанное, влияние окружающей среды на скорость роста трещины в коррозионной среде следует рассматривать в виде [130, 142-144]  [c.390]

В работе [60] высказана иная точка зрения на процесс ингибирования неорганическими окислителями. Авторы считают, что ингибирующее действие этих соединений связано не столько с их адсорбционным взаимодействием с металлом, сколько с влиянием продуктов электрохимического восстановления на кинетику электрохимических реакций. Иначе говоря, если скорость анодного растворения металла определяется активностью поверхностных ионов ОН, образующихся при восстановлении окислителей, то скорость коррозии металла и его потенциал зависят от отношения числа электронов, реализующихся в катодном акте, к числу образующихся при этом ионов ОН-. Это отношение названо авторами коэффициентом активации по его величине предлагается судить об эффективности ингибиторов.  [c.129]

Если считать, что растворение металлов в кислотах протекает по электрохимическому механизму, а в настоящее время справедливость этой точки зрения, если исключить особые случаи растворения металлов при сильно отрицательных потенциалах, ни у кого сомнений уже не вызывает, то напрашивается однозначный вывод ингибиторы могут изменять скорость растворения лишь в том случае, когда они будут влиять на кинетику электрохимических реакций, лежащих в основе коррозионного процесса. Далее, если придерживаться тех же принципов, которые мы положили в основу рассмотрения механизма действия неорганических ингибиторов (влияние на кинетику электрохимических реакций), то, используя основные уравнения, определяющие зависимость скорости выделения водорода и ионизации металла от потенциала, мож-  [c.108]

Исследование коррозионно-электрохимических свойств фаз находится на начальной стадии и проводится пока в основном в двух направлениях снятие поляризационных кривых и определение коррозионной (химической) стойкости в некоторых средах. Лишь в отдельных работах в последнее время получены данные по зависимости скорости растворения (окисления) от потенциала для некоторых фаз и сделаны попытки расшифровать природу процессов, осуществляющихся на наиболее характерных участках поляризационных кривых. В то же время исследование свойств фаз в широкой области потенциалов совершенно необходимо, так как в зависимости от области потенциалов и, следовательно, типа агрессивной среды влияние фазы на коррозионную стойкость сплава может быть принципиально различным. Кроме того, получающиеся при этом результаты необходимы для выявления условий, в которых материалы на основе фаз могут быть использованы как коррозионностойкие. Они содержат также весьма ценную информацию для решения ряда задач фазового анализа и металловедения, на которых в данном обзоре не было возможности остановиться.  [c.76]


При электрохимическом полировании переход металла в раствор происходит в условиях частичной пассивности, что связано с образованием на нем пассивирующей пленки оксидной или оксидно-адсорбционной природы. Она образуется под влиянием взаимодействия продуктов растворения металла с компонентами электролита или вследствие непосредственного окисления при повышении анодного потенциала, а также сорбционных процессов. Результат анодной обработки в этих условиях определяется соотношением скоростей формирования пленки и ее растворения в электролите. Преобладание первой из них способствует оксидированию, второй — травлению металла. Эффект полирования достигается при близких скоростях процессов, когда формируется пленка минимальной толщины, которая, однако, должна быть достаточной, чтобы предотвратить травящее действие электролита на металл.  [c.73]

Вследствие различного влияния повышения температуры на протекание анодного и катодного электродных процессов электрохимической коррозии на разных металлах может значительно измениться не только скорость коррозии, но и полярность электродов. Например, гальваническая пара Ре—2п в горячей водопроводной воде меняет свою полярность так потенциал цинка облагораживается и цинк становится катодом по отношению к железу, потенциал которого с повышением температуры становится отрицательнее.  [c.231]

Уравнения (386) и (387) справедливы для любого окислительновосстановительного электрода и показывают зависимость скоростей электродных процессов от потенциала и строения двойного электрического слоя. При этом видно, что на скорость электродного процесса оказывает влияние только часть общего скачка потенциала, приходящаяся на плотную часть двойного электрического слоя (т. е. на зону, где протекает электрохимическая реакция), гр = (Ум.)обр + А1/ — il i.  [c.201]

Основная причина влияния скачка потенциала на скорость элек-трохимичес1сих реакций заключается в том, что скорость таких реакций лимитируется стадией переноса заряда, энергия активации которого является функцией потенциала на границе металл-раствор. В подобных случаях количественная связь между скоростью электрохимического процесса и электродным потенциалом описывается уравнением, носящим название уравнение Фольмера-Фрумкина. Применительно к реакции (4.1) для простейшего случая протекания процесса в одну стадию, т.е. при одновременном отщеплении п электронов, это уравнение имеет вид  [c.81]

Для решения проблемы материального оформления этого процесса было исследовано [178] влияние азотной кислоты на коррозионно-электрохимическое поведение сталей в серноазотных кислых смесях, содержащих 10—50 % H2SO4 и до 10 % HNO3. Показано, что при достижении определенной концентрации азотной кислоты потенциал сталей смещается в положительную сторону, происходит пассивация сталей, и скорость коррозии их резко уменьшается. При этом по скорости коррозии аустенито-ферритные стали не уступают высоколегированным сталям с большим содержанием никеля (табл. 18).  [c.203]

Анион органического вещества, имеющий небольшие размеры, действительно ускоряет указанные реакции в этом случае он не ингибитор, а стимулятор коррозии. Анионоактивные вещества с длинной гидрофобной цепью могут быть, наоборот, ингибиторами коррозии, потому что, во-первых, они в растворе кислоты уподобляются веществам неионогенного типа, механизм действия которых уже рассмотрен во-вторых, вещества с более длинной гидрофобной цепью создают в приэлектродном слое более слабое электрическое поле, поэтому влияние их на изменение потенциала в реакционной зоне ослабевает. Как видно из рис. 3, б (кривая 3) в случае адсорбции анионов с более длинной гидрофобной ценью скачок потенциала в реакционной зоне уменьшается (г зР << г 5Р). Следовательно, в соответствии, с теорией замедленного разряда, уменьшаются скорости электрохимических реакций коррозионного процесса. Поэтому эффективность действия таких ингибиторов увеличивается. В то же время, как показали исследования [7, 8], в отличие от анионов органичен ских веществ ионы галогенов, хотя и имеют небольшие размеры, все-таки являются не стимуляторами, а ингибиторами коррозии стали в серной, хлорной и соляной кислотах. Объяснение наблюдаемому явлению дано в работе [8]. Авторы предположили, что при специфической адсорбции анионов на поверхности стали образуется хемисорбированное соединение атомов железа с этими ионами. Диполи этих соединений располагаются своим отрицательным концом в сторону раствора. В соответствии с рассмотренной схемой адсорбции ионов галогенов я з1-потенциал сдвигается в положительную сторону. Вследствие этого катодная реакция восстановления Н3О+ и анодная реакция ионизации металла замедляются, вызывая общее замедление растворения стали. В результате специфической адсорбции ионов галогенов уменьшается положительный заряд металлической обкладки двойного слоя. Поэтому облегчается адсорбция катионов органических веществ и увеличивается ингибирующее действие этих катионов в присутствии ионов галогенов. Механизм действия анионов органических и неорганических веществ различен. Поэтому понятно, почему в присутствии анионов органических веществ эффективность действия катионов органических веществ выражена меньше [3, 7]. Эффективность неионогенных веществ в присутствии анионов неорганических веществ также увеличивается.  [c.135]


Здесь уместно напомнить уравнение (3.23), согласно которому смещение потенциала электрода от его равновесного значения обратно пропорционально току обмена. Если ток обмена очень велик, то сравнительно небольшой анодный ток (эквивалентный скорости разряда Н-ионов из раствора), который может на несколько порядков быть меньше тока обмена, практически не окажет какого-либо влияния на величину потенциала электрода. Процесс саморастворения металла при этом- будет протекать при равновесном потенциале металла, а его скорость определится кинетикой разряда ионов водорода, иначе говоря, — величиной водородного перенапряжения. Именно по такому механизму происходит электрохимическое саморастворение амальгам щелочных металлов и цинка. Аналогичным образом, как было показано Я. М. Колотырки-ным, можно объяснить саморастворение свинца в сернокислом растворе.  [c.140]

Значение а определяют расчетным путем или экспериментально [266]. ПolV имo факторов, определяющих механические процессы разрушения, на коррозионную трещиностойкость металла существенное влияние могут оказывать электрохимические условия в вершине трещины. Установлено [165, 238], что по мере развития трещины электрохимическое состояние в вершине трещины, интегрально характеризуемое водородным показателем pH и электродным потенциалом ф, непрерьшно изменяется, причем, в зависимости от скорости роста трещины устанавливаются различные значения pH и <р. Например, если коррозионное растрескивание титанового сплава в 3%-ном растворе Na l протекает со скоростью меньше 2 10 мм/с, электродный потенциал постепенно увеличивается и может достигать + 0,2...0,4 В (Н.В.Э), а раствор в полости трещины подкисляется до pH = 2,5...3. При скоростях роста трещины, превышающих 2 10 мм/с, электродный потенциал достигает -0,8 В ( Н.В.Э), и в полости трещины наблюдается подщелачивание до pH = 9... 10 [165].  [c.483]


Смотреть страницы где упоминается термин Влияние потенциала на скорость электрохимических процессов : [c.63]    [c.152]    [c.93]    [c.171]    [c.100]   
Смотреть главы в:

Электрохимические основы теории коррозии металлов  -> Влияние потенциала на скорость электрохимических процессов



ПОИСК



Влияние N-процессов

Влияние скорости

Потенциал влияние

Потенциал скорости

Потенциал электрохимический

Процесс электрохимический

Скорость электрохимического процесса

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте