Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механика слоистых пластин

МЕХАНИКА СЛОИСТЫХ ПЛАСТИН  [c.40]

Слоистые композиционные материалы можно разбить на две группы. Первую группу составляют простые пластины, которые состоят из дисперсной и матричной фаз. Во вторую группу входят слоистые составные пластины, представляющие собой сочетания простых пластин. Слоистые пластины используются при изготовлении стоек, балок, панелей и других конструктивных элементов, которые являются основными силовыми элементами и должны обладать малым весом, коррозионной стойкостью и другими многими важными свойствами. Для получения необходимых свойств следует наиболее рационально распределять и сочетать дисперсные фазы. Дальнейшее изложение механики слоистых пластин ведется с учетом этих замечаний.  [c.40]


Рассматриваемое направление в механике многослойных оболочек широко представлено в уже цитированных публикациях. Особо отметим обстоятельный обзор Э.И. Григолюка и Г.М. Куликова [110],в котором даны классификация используемых гипотез и критический анализ работ именно этого (общего, по мнению авторов обзора) направления. Материалы Э.И. Григолюка и Г.М. Куликова позволяют не останавливаться на обсуждении конкретных вариантов уравнений слоистых пластин и оболочек, относящихся к рассматриваемому направлению. Большее внимание в настоящей монографии будет уделено лишь одному из таких вариантов, основанному на кинематической модели ломаной линии и получившему (см. [52, 111, 115] и др.) широкую известность и признание — соответствующая система дифференциальных уравнений статики и устойчивости слоистых оболочек сформулирована в параграфе 3.7. Эта система используется при сравнительном анализе результатов расчета слоистых оболочек с привлечением различных уточненных моделей их деформирования.  [c.8]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]

Внедрение композитов в тонкостенные несущие элементы конструкций и их широкое использование в разнообразных изделиях современной техники выявили необходимость учета новых факторов и поставили перед учеными и специалистами принципиально новые важные задачи механики как композитных материалов, так и конструкций на их основе. К таким факторам, в значительной степени определяющим несущую способность композитных оболочек, следует отнести резко выраженную анизотропию деформативных свойств армированного материала и его низкое сопротивление трансверсальным деформациям. Классическая теория оболочек пренебрегает такими деформациями, что потребовало отказа от традиционных расчетных схем и разработки уточненных математических моделей деформирования тонкостенных слоистых систем. Поэтому создание новых и развитие существующих уточненных методов расчета слоистых анизотропных пластин и оболочек, их апробация и определение границ применимости является важной и актуальной задачей.  [c.5]


Теория многослойных анизотропных композитных оболочек и пластин — динамично развивающийся раздел механики деформируемого твердого тела. Современная инженерная практика, выдвигая многочисленные сложные проблемы прочности, устойчивости, динамики слоистых тонкостенных элементов ответственных конструкций, активно стимулирует дальнейшую разработку этой теории. В последние десятилетия усилиями отечественных и зарубежных ученых в ее развитии — в создании и обосновании расчетных и экспериментальных методик определения тензоров эффективных жесткостей армированных сред, разработке и исследовании неклассических математических моделей деформирования тонко-  [c.80]

Локальная потеря устойчивости — основной вид разрушения при сжатии слоистых композитов с зонами расслоения. Когда слоистый композит с расслоением подвергается действию сжимающей нагрузки, в зонах расслоения наблюдается, как показано на рис. 3.48, локальная потеря устойчивости (выпучивание) [36]. Выпучивание обусловлено высокой концентрацией межслойного напряжения на фронте расслоения (вершине трещины) далее при возрастании нагрузки область выпучивания увеличивается до критического размера, после чего наступает общая потеря устойчивости нагружаемой пластины. Обычно это происходит при нагрузке, намного меньшей прочности при сжатии неповрежденного композита, или нагрузки общей потери устойчивости пластины. Существует несколько расчетных моделей, позволяющих прогнозировать рост зоны выпучивания и влияние различных параметров на распространение расслоения [36—38]. В этих моделях используется либо критерий прочности, либо критерий механики разрушения (скорость высвобождения энергии деформирования). Однако из-за сложности задачи, обусловленной такими факторами, как геометрия зоны расслоения, толщина композита после появления  [c.182]

Заманчивне возможности упрощенных формулировок и решений с давних пор побуждали исследователей, работающих в области механики конструкций, попытаться описать особенности трехмерного поведения пластин в рамках двумерной классической теории. Все более широкое использование слоистых композитов в авиационных конструкциях за последнее десятилетие стимулировало практический интерес к теориям пластин, в которых учитываются деформации поперечного сдвига, межслойные напряжения и влияние толщины. Ниже будет сделано несколько коротких замечаний о современных вариационных формулировках в этих задачах, чтобы проиллюстрировать мощь вариационных методов, открывающих новые пути построения теорий, которые учитывали бы указанные факторы.  [c.416]

Для классиков механики, создгшавших теории стержней, пластин и оболочек, они были единой дисциплиной. Затем, как и в других разделах механики, начался процесс дробления. Самостоятельность обрели линейная, нелинейная и уточненные теории [10, 46, 63]. В последующем происходило обособление теории анизотропных оболочек, динамики, устойчивости, разрушения, асимптотических и численных методов. Оформились в самостоятельные дисциплины строительная механика корабля, летательных аппаратов, собственно строительная механика и др. Приобрели автономность ребристые, слоистые, армировашше, мягкие, намоточные и другие оболочки [57, 71].  [c.3]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Четвертая глава (в первом издании - третья) дополнена описанием двухконстантной теории распространения трещин в пластине при циклической нагрузке. Туда же перенесен параграф, относящийся к динамике трещин в упругопластическом теле. Введена новая глава - шестая, посвященная механике трещин в средах со структурой в решетках, армированных (слоистых) материалах, в средах блочной структуры. Кроме того, внесено много дополнений и изменений. Опуиден материал, представляющийся автору второстепенным или недостаточно завершенным. В результате объем книги остался практически прежним.  [c.3]


Библиография для Механика слоистых пластин : [c.285]    [c.283]    [c.285]    [c.441]    [c.279]    [c.279]   
Смотреть страницы где упоминается термин Механика слоистых пластин : [c.41]    [c.45]    [c.5]    [c.282]   
Смотреть главы в:

Механика разрушения композиционных материалов  -> Механика слоистых пластин



ПОИСК



Пластины слоистые



© 2025 Mash-xxl.info Реклама на сайте